
7
The

Bad Stuff 

In previous chapters, we have tried to show good ways to write and use 
RTL Verilog to support verification processes. In this chapter, we look at spe- 
cific examples of what projects, designers, and EDA verification tool develop- 
ers have done that obstruct a productive verification process flow. 

By explicitly pointing out the bad stuff, this chapter may be helpful to 
some readers of the preceding chapters who want to see what we are explicitly 
ruling out to achieve verifiable RTL design. Other readers may skip directly to 
this chapter with the intriguing title, and then read the preceding chapters that 
tell them what to do instead of the bad stuff. 

Some of the bad stuff cited in this chapter is not all that bad, but is near the 
borderline between what we would consider verifiable RTL and not so verifi-
able RTL. Some are a matter of degree that might not hurt verification, like 
using a couple extra carefully-selected keywords from the unsupported set, or 
making a few bit-references to a bus. 

Others are purely a matter of arbitrary choice. Where there are three differ- 
ent ways to do the same thing in RTL Verilog, we pick one, and relegate the 
other two to this bad stuff chapter. Leaving the choice up to each designer on 
a project team may seem to provide an initial gain in designer productivity. 
This productivity gain, however, is overwhelmed by the increased costs of 
reading and supporting a wide range of constructs by verification engineers 
and EDA tools. 
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Examples of the very bad stuff include: 

• expressing flip-flops as in-line code instead of objects 

• using the X-state in RTL Verilog 

• killing RTL simulation performance by frequent and bit-level visits 

• using constructs that cause simulation differences between the RTL and 
the synthesized gate model 

• writing Verilog that has logic timing problems, where a resultant erroneous 
state is dependent upon a particular sequence of events 

• vendor EDA tools that break their customer’s verification process flow 

• design teams that do not define and follow a verification-oriented process 

• drawing keywords and statement types from the entire Verilog language in 
RTL design 

• user-defined primitives, and especially sequential user-defined primitives 

7.1 In-line Storage Element Specification
[Example 7-1] (a) illustrates a familiar RTL coding style that specifies

flip-flops in-line. It is bad because it locks in on a flip-flop description style, 
which hinders adaptation to design and verification tools. 

Example 7-1

in module in module 
a) Bad: Flip-flops in-lined 

always @(posedge ck250)
begin

r_rcs <= rst_ 7 c_rcs : 0; 
r_del <= c_del;
r_avail <= c_avail;
r_n1 <= rst_ ? c_n1 : 0; 
r_n2 <= rst_ ? c_n2 : 0; 
r_n3 <= rst_ ? c_n3 : 0; 
r_n4 <= rst_ ? c_n4 : 0; 
r_n5 <= rst_ ? c_n5 : 0; 
r_n6 <= rst_ ? c_n6 : 0; 

b) Good: Flip-flops instantiated

dff_r reg_rcs (r_rcs, ck250, rst_, c_rcs);
dff_r5 reg_del (r_del, ck250, c_del);
dff reg_avail (r_avail, ck250, c_avail);
dff_r5 reg_n1 (r_n1 , ck250, rst_ , c_n1);
dff_r5 reg_n2 (r_n2 , ck250 , rst_ , c_n2);
dff_r5 reg_n3 (r_n3, ck250, rst_ , c_n3);
dff_r5 reg_n4 (r_n4, ck250, rst_ , c_n4);
dff_r5 reg_n5 (r_n5, ck250, rst_ , c_n5);
dff_r5 reg_n6 (r_n6, ck250, rst_, c_n6);

end

[Example 7-1] (b) is good because it isolates tool-specific details about 
flip-flop modeling within tool-specific libraries. This methodology facilitates 
simultaneously optimizing the performance of simulation, equivalence-check- 
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ing, model-checking and physical design within a project’s design flow. See
chapter 3 for a complete explanation.

7.2 RTL X State
Two-state in this book refers to eliminating the X, and using only 0, 1 and

Z states. Although tri-state buses have an important place in modern system
design and simulation, the bulk of the logic and nodes are only two-state, not 
tri-state.

Our initial purpose in eliminating the fourth X-state was simulation perfor- 
mance. We are not alone in eliminating the X. In recent years, new vendor 
simulator releases provide the option of simulating without an X-state in order 
to achieve greater simulation performance. 

However, we believe that using the X-state in RTL simulation is a bad 
idea, even without the performance penalty that it causes. RTL simulation 
using the X-state can be both excessively pessimistic and optimistic, and 
attempts at overcoming these shortcomings are impractical. 

7.2.1 RTL X-STATE PROBLEMS 

7.2.1.1 RTL X-State Pessimism 

simulation. Consider the Example 7-2]. 

reg [15:0] a,b,c;

Arithmetic operations are one example of gross pessimism in X-state RTL 

Example 7-2

...
begin

b = 16’b0000000000000000;
c = 16’b000000000000X000;
a = b + c;
$display(" a = %b",a);

end

The result for “a” in a four-state Verilog simulator will be 

“a = XXXXXXXXXXXXXXXX”. 

In RTL simulation of arithmetic operations, fast simulators map these 
operations into host computer instructions. These fast simulators detect any 
X-bits in the input operands by checking an extra “flag word” for each input 
operand. Bits that are “1” in the “flag word” mark bit positions that are X in 
the input operand. So if the flag word is non-zero for either input operand, the 
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simulator skips the addition instruction, and assigns all X’s to the result. Note 
that the overhead added by the check for X-bits in an input operand is a sin- 
gle-instruction step, and therefore closely matches the performance of a single 
host-machine arithmetic instruction. 

At the cost of reduced simulation performance, a Verilog gate-level simu- 
lation can more accurately handle this addition, resulting in “a = 
000000000000X000”. The gate level simulator can propagate the X more 
accurately because it pays the performance cost of visiting each bit in each 
operand, and generates a result bit-by-bit. 

[Example 7-3] illustrates pessimism in a case statement. Consider the situ- 
ation where the control signal “d” is “0X.” Interpreting the “X” as a possible
“0” or “1 ,” only the first two case branches should be reachable. So, less pes-
simistically, only the left bit of “e” is ambiguous, and the result should be “e
= X1 .” However, a four-state Verilog simulator will give “e = XX” when con-
trol signal “d” is “0X.”

Example 7-3

reg [1:0] d,e;
...

begin
d = 2’b0X;
case (d)

2’b00 : e = 2’b01;
2’b01 : e = 2’b11;
2’b10 : e = 2’b10;
2’b11 : e = 2’b00;
default : e = 2’bXX;

endcase
display(" e = %b",e);

end

7.2.1.2 RTL X-State Optimism 

More insidious is the way that RTL simulation of case statements and
if-else statements with an X-state can lead to optimistic results, and thereby
hide real start-up problems in a design.

Given an XX as the start-up state for d, the case statement in [Example
7-4] will take the default branch. That only test one of the four possible
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branches the start-up condition could actually take, if we consider the four
possible two-state interpretations of the XX bits.

Example 7-4

reg [1:0] d,e;

begin
case (d)

...

2’b00 : e = 2’b01;
2’b01 : e = 2’b11;
2’b10 : e = 2’b10;
default : e = 2’b00;

endcase
$display(" e = %b",e);

end

7.2.1.3 Impractical 

As a thought exercise, it is possible to envisage an RTL style that would 
intercept and process X-states more accurately, moderating both the pessi- 
mism and the optimism. 

[Example 7-5] (a) shows an if-else statement that accurately intercepts and
propagates an X-state, [Example 7-5] (b) presents a case statement that is
similarly modified to intercept X-states and propagate their affect on the result 
more accurately.

Example 7-5
a) X intercept in if-else

if (f = = = 1’b0)
g = 2’b00; ...

else begin 
if (f = = = 1’bX)

g = 2’b0X; 2’b00 : e = 2’b01;
else 2’b0X : e = 2’bX1;

g = 2’b01; 2’b01 : e = 2’b11;
2’bX0 : e = 2’bXX;
2’bXX : e = 2’bXX;
2’bX1 : e = 2’bXX;
2’b10 : e = 2’b10;
2’b1X : e = 2’bX0;
2’b11 : e = 2’b00;

b) X intercept in case

reg [1:0] d,e;

case (d)

endcase
end
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Another way around the pessimism/optimism problems with the case and
if-else statements is to express the state transitions in boolean form. [Example
7-6] shows how the state transitions in [Example 7-4] can be expressed in a 
boolean form that propagates X’s with only the mild pessimism familiar to 
users of X-state in gate-level simulators. 

Example 7-6

reg [1:0] d,e;

begin

end

...

e = { ( ^ d), ~ d[1]};

These examples illustrate how RTL usage that attempts to intercept X’s 
everywhere is a not a good idea. Here are some reasons for not intercepting 
X’s.

• Simulation performance. For case and if-else statements, all the extra
tests for X’s add to the CPU processing that the simulator has to do. 

• Labor content. Someone has to do the work of adding the extra X-test case
and if-else statements, or reduce the branch statements to boolean form.

• Complexification. A good feature of RTL design is that it can present a 
designer’s intent more clearly than boolean-level design, and intercepting 
X’s detracts from the clarity. 

• Completeness. There is no current method of guaranteeing that the 
designer’s X interception and propagation is complete enough to avoid the 
pessimism and optimism. 

• Synthesis. X interception makes the RTL a ternary logic design, which has 
to be thrown out when mapping the design to binary logic gates in synthe- 
sis.

We prohibit use of X-intercepting and X-assignments anywhere in our 
RTL logic design. This includes the X-intercepting default in fully specified 
case statements as shown in Thomas and Moorby [1998] and in [Example 7-7].

Example 7-7

...
case (select)

2’b00 : mux = a;
2’b01 : mux = b;
2’b10 : mux = c;
2’b11 : mux = d;
default : mux = ’bX;

endcase
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Our RTL design style requires that all case/casex statements be
fully-specified, so assigning an X in a default is never needed for telling syn-
thesis about don’t-care situations. 

Contemporary logic synthesis technology allows for greater optimization 
of generated gates for case/casex statements in which certain input control
variable state values are impossible. For these case/casex statements, the
designer does not care about what output states the gates generate for those
control state values. 

Given the importance that we assign to RTL-based verification, we feel 
that the extra gates saved by allowing synthesis to optimize don’t-care logic 
are not worth: 

• precluding the simulation of gate-based ATPG test vectors against the RTL 
chip models. 

• the challenges it presents to fast RTL-to-gate boolean equivalence check- 
ing between the RTL and the gate level description [Foster 1998]. 

• the semantic mismatches between RTL and gate-level simulation. 

7.3 Visits 
Chapter 4 introduced the principle of minimizing the frequency and 

granularity of visits for best RTL logic simulation software performance. In 
this section, we review RTL styles that degrade simulation performance by 
their high visit frequency and fine visit granularity. Primary visit simulation 
performance offenders include: 

• referencing bits instead of buses, 

• configuration tests throughout the duration of a simulation, and 

• loops.

7.3.1 Bit Visits 

To achieve the best RTL simulation performance, designers writing 
Verilog code focus on the signal bus instead of the signal bit. In Chapter 6, we 
recommended parallel value operations instead of operations on individual 
bits. In that chapter, we used the example of a content-addressable memory 
coding. In [Example 7-8], we illustrate the Verilog coding for error-correcting 
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encoding logic, using bit references (a), which simulate slow (bad), and 
parallel value operations (b), which simulate fast. 

Example 7-8

a) Bit references 

c_ecc_out_1 =c_in [10] ^ c_in[11]
 ̂ c_in[12]  ̂ c_in[13]
 ̂ c_in[14]  ̂ c_in[15]
 ̂ c_in[16]  ̂ c_in[17]
 ̂ c_in[18]  ̂ c_in[19]
 ̂ c_in[20]  ̂ c_in[21]
 ̂ c_in[22]  ̂ c_in[23]
 ̂ c_in[24]  ̂ c_in[25]
 ̂ c_in[26]  ̂ c_in[27]
 ̂ c_in[28]  ̂ c_in[32]
 ̂ c_in[35]  ̂ c_in[38]
 ̂ c_in[39];

b) Parallel value operations 

c_ecc_out_1 =
^ (c_in & 40’h003ffff893);

Note that [Example 7-8] (b) is a more of register transfer operation. Its 
compactness makes the functional intent more clear and obvious to a reader, in 
addition to simulating faster. 

7.3.2 Configuration Test Visits 

A project can improve simulation performance by eliminating configura- 
tion test visits after simulation start up. Move configuration decisions to: 

• compilation controlled by ‘ifdef -‘else - ‘endif.
• text macro preprocessing (as described in Chapter 3), or 

• instantiation of distinct library module types for each distinct functionality. 

Consider the [Example 7-9] of a parameterized first-in-first-out (FIFO) 
queue model that designers instantiate in different flavors throughout a 
design. The instances differ in their width, depth and whether to encode the 
one-hot data input. With every different value written to the queue, the model 
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calls the encoder function and returns the indata or the encoded version of
indata. This call costs in simulation run time with every write to the queue. 

Example 7-9

module fifo( 

parameter WIDTH = 13;
parameter DEPTH = 32;
parameter ENCODE = 0;

function [31:0] encoder;
input [WIDTH-1:0] indata;
begin

if (ENCODE != 0) begin

...

...

< calculate encode value based on indata >
end

encoder = indata;
else

end

The simpler and better way is to define two FIFO library types, one that
encodes its data input, and another that doesn’t. Just as with a parameterized 
FIFO module instance, the decision as to whether to use an encoding version 
or not is on the instantiation line. 

fifo #(12,64, 1) iqueue (...); // Bad, parameterized functionality
fifo_e #(12, 64) iqueue (...); // Good, functionality decidedatcompile time

The separate models for each functionality makes the models easier to 
understand, and more likely to simulate correctly as well as fast. 

7.3.3 for Loops 

In our experience, the only RTL need for a for loop is memory array mod- 
els that have a clear memory functionality. Since the OOHD methodology 
(see chapter 3) encapsulates memory in library modules, we limit the for loop
to the library designer, and do not make it available to the chip designer. 

Widespread use of the for loop degrades simulation performance when
designers misapply it. Sampling Verilog from projects that allowed the for
loop in chip designs, we found that every non-memory for could be elimi-
nated, and the clear memory for loop could be rewritten to achieve far better
simulation performance. 

[Example 7-10] presents an example of a for loop from a real design, and
the simpler, faster, clearer way to write the same logic. In the bad example, 
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notice how there is a count increment, a test for loop completion, and a visit to 
every bit. The good example eliminates the loop overhead, and allows the 
simulator to act on the bits in parallel, loading, inverting and storing the host 
machine word.. 

Example 7-10

a) Bad: Slow / Less Obvious 

input [‘N-1:0] a;

integer i;
reg [‘N-1:0] b;
always @ (a) begin

b[i] = ~a[i];

b) Good: Fast / Simple and Clear 

input [‘N-1:0] a;

assign b = ~a;
output [‘N-1:0] b; output [‘N-1:0] b;

for (i=0; i<=N-1; i=i+1)

end

It is often impossible for even the writers of the original Verilog to deter- 
mine what would lead to their using a for loop like [Example 7-10] (a). We
can guess that they had a “gate-instantiation” viewpoint instead of a RTL
viewpoint at the time that they wrote the Verilog. 

Compared to [Example 7-10], it may appear somewhat legitimate to use a 
for loop at interfaces between opposite bit-ordering conventions. [Example
7-11] shows a loop-based bus reversal and a concatenation-based bus reversal.

In good design practice, the need for bus bit-ordering reversals is very rare. 
It might be argued that because they are rare, their simulation performance 
effects would be small. Amdahl’s Law [Amdahl 1967], however, warns that 
slow parts of a process will tend to dominate in the overall process perfor- 
mance. Their rarity also means that the productivity gain from using the for
loop instead of concatenation would be very minor. 

Example 7-11

a) Bad: Simulates slower b) Good: Simulates faster 

input [15:0] a;
output [0:15] b;
integer i;
reg [0:15] b;
always @ (a) begin

end

input [15:0] a;
output [0:15] b;
assign b = {a[0], a[1], a[2], a[3],

a[4], a[5], a[6], a[7],
a[8], a[9] a[10], a[11],
a[12], a[13], a[14], a[15]};for (i=0; i<=15; i=i+1)

b[15 - i] = a[i];
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[Example 7-12] (a) shows a FIFO memory model example with poor 
simulation performance. Here are some of its performance problems. 

• Putting the for loop outside the case results in repeatedly testing whether
reset is on or off. 

• Rewriting all of the unaddressed words takes simulation time and contrib- 
utes nothing to the function’s verification. 

[Example 7-12] (b) shows the same FIFO memory model with improved 
simulation performance. It tests for reset only once, and only loops if the reset 
is true. It also eliminates the rewriting of the unaddressed memory words. 

Example 7-12

a) Memory model with poor simulation performance 

for( i = 0; i < fifo_depth; i = i+1)
begin

case({ reset_L_ff, w_addr_ff == i})
2’b00,
2’b01: entry_ff [i] <= 0;
2’b11: entry_ff[i] <= write_data;
2’b10: entry_ff[i] <= entry_ff[i];

endcase

b) Memory model with improved simulation performance 

for(i = 0; i < fifo_depth; i = i+1) entry_ff[i] <= 0;

entry_ff[w_addr_ff] <= write_data;

end

if (reset_L_ff)

else

7.4 Simulation vs. Synthesis Differences 
This section describes Verilog RTL coding styles that yield mismatches 

between RTL simulation and post-synthesis gate-level simulation. Mills and 
Cummings [1999] aptly contend “that any coding style that gives the HDL 
simulator information about the design that cannot be passed on to the synthe- 
sis tool is a bad coding style. Additionally, any synthesis switch that provides 
information to the synthesis tool that is not available to the simulator is bad.” 
To prevent mismatches between RTL and post-synthesis simulation, both pro- 
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cesses must possess equal understanding of the RTL design model. We restate 
this idea as the Faithful Semantics Principle. 

Faithful Semantics Principle 

A RTL coding style and set of tool directives must be selected that 
insures semantic consistency between simulation, synthesis and formal 
verification tools. 

To avoid RTL and gate-level simulation differences, design projects can 
adopt the RTL Verilog style presented in this book. They must enforce the style 
by tailoring a lint tool rules set, and locking the linting step into their design 
process to check all RTL Verilog. 

If a project does not enforce faithful semantics, RTL simulations lose their 
credibility, and much more gate-level simulation is required. Because equiva- 
lence checkers base their RTL semantics on synthesis RTL policies, they are 
generally no help in detecting RTL simulation and synthesized gate simula- 
tion differences. 

The following RTL simulation and synthesized gate simulation differences 
draw from our own experience and Mills and Cummings’ [ 1999] paper. Their 
paper tells story after story of bad silicon resulting from designers overlook- 
ing RTL simulation and synthesis differences. We are in complete agreement 
with their goal of avoiding these differences, and carry this one step further by 
not allowing the X-state in RTL Verilog simulation. 

We divide the causes of differences into three categories: 

• explicit differences, 

• careless coding, and 

• timing.

7.4.1 Explicit Differences 

RTL-based Verilog simulation and synthesis tools allow designers to 
deliberately go awry in their RTL verification process, and create differences 
between the RTL and gate-level simulation behaviors. 

7.4.1.1 Full and Parallel Case 

The full_ and parallel_case synthesis-directing comments provide more
information to the synthesis tool than used by the RTL simulator. They too 
often result in gates that don’t simulate the same as the RTL. 
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Full case. In Chapter 6, we presented the verifiable RTL design requirement 
of fully-specifying case/casex statements in the RTL, using the full_case
[Example 6-2] (a). Let us look again at this example here in [Example 7-13]
and consider what goes wrong in RTL simulation.

Example 7-13

module c (r_o, c_n);
input [1:0] r_o;
output [1:0] c_n;
reg [1:0] c_n;
always @(r_o)

case (r_o) // rtl_synthesis full_case
2’b00 : c_n = 2’b01;
2’b01 : c_n = 2’b10;
2’b10 : c_n = 2’b00;

endcase
endmodule

Given the synthesis-directing full_case, contemporary synthesis tools gen-
erate gates that assign 0 or 1 values to the two bits of c_n for the case when
r_o has the value 2’b11. Synthesis optimizations choose the value for c_n in
this case. 

On the other hand, the RTL simulator treats c_n as a latch when r_o has
the value 2’b11. The designer may contend that the 2’b11 for r_o is impossi- 
ble in normal operation, but there are circumstances that the designer must 
consider when making that contention: 

• states during the start-up sequence, 

• scan state sequences, and 

• the designer’s contention may be wrong. 

Designers can add an assertion for the impossible r_o in the 2’b11 state
and get diagnostic messages to deal with the normal operation. However, the 
assertion for the 2’b11 state does not address problems with the start-up
sequence and scan operation. 

Parallel case. For casex statements that have overlapping case-item con-
stants, the parallel_case synthesis directive produces gates that do not simu-
late the same as the RTL. 

For casex statements with unique non-overlapping case-item constants,
the simulation behavior is the same between the gates and the RTL. Whether 
the parallel_case synthesis directive is present or not, synthesis produces the
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same gates for this class of casex statements. So the parallel_case synthesis
directive is superfluous. 

[Example 7-14] shows a casex statement implementation of a priority
encoder. It includes the added parallel_case that tells synthesis to produce
faster logic based on the assumption that only one bit of c_hot is 1. In
response to the parallel_case, the synthesized logic behaves like a multi-
plexer, selecting one of the values, and or’ing it with the non-selected paths. 
The gate simulation matches the RTL simulation only within the bounds of 
the assumption. In situations where more than one bit is 1, the gate-level ver- 
sion or’s the assigned c_code values, while the RTL version still simulates as
a priority encoder selecting only one assigned value for c_code.

Example 7-14

casex (c_hot) // RTL synthesis parallel_case 
8’b1???????: c_code = 3’b000;
8’b?1??????: c_code = 3’b001;
8’b??1?????: c_code = 3’b010;
8’b???1????: c_code = 3’b011;
8’b????1???: c_code = 3’b100;
8’b?????1??: c_code = 3’b101;
8’b??????1?: c_code = 3’b110;
8’b???????1: c_code = 3’b111;

endcase

Just as with the full_case synthesis directive, use of the parallel_case syn-
thesis directive too often is based on the same assumptions that turn out to be
wrong.

Eliminating full and parallel case. Here are the style elements that eliminate 
the full_case and parallel_case synthesis directives, and thereby maintain
alignment between RTL and synthesized gate simulation behavior. 

• Fully-specified case/casex statements. For case/casex statements, this
means enumerating all case-item constant values, with either explicit con- 
stant values, a default within the case/casex statement, or a default value
assignment preceding the case/casex statement.

• Eliminating all overlaps from case-item constant values. In the [Example
7-14], replacing all of the ‘?’s to the left of the ‘1’ with ‘0’s eliminates the 
overlaps.

• Accepting the priority encoder in gates that synthesis generates, with its 
added timing delays and gate count. This makes the simulation behavior of 
the gates match that of the priority encoder in the RTL. In non-critical 
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delay paths and areas where gate-count is not significant, a priority 
encoder in gates is perfectly acceptable. 

• Explicitly specifying a multiplexer in the RTL. Implementing the RTL pri-
ority encoder as multiplexer (see [Example 6-4] in Chapter 6) makes the 
RTL simulation match the gate simulation, as well as minimizing the delay 
and gate count. 

7.4.1.2 X Assignment 

In addition to all of the pessimism, optimism and impracticality problems 
of RTL X-state simulation discussed earlier in section 7.2 of this chapter, we 
also remind the reader that it causes simulation differences between the RTL 
and the gate-level. 

Although it is possible to craft RTL logic in terms of boolean expressions 
in place of case/casex and if-else statements to make the X-state propagate
more accurately, such crafting is counterproductive. To be completely safe in 
their X propagation, designers have to rule out their use of case/casex and
if-else constructs from their Verilog RTL design style.

Many designers believe that making ‘X’ assignments for unused states in 
RTL state machine design is a useful trick for debugging bogus state 
machines. Because they see this trick working for them on many of their state 
machines, it is a strongly-held belief. 

However, hard-earned experience with bad silicon caused by the RTL 
X-state optimism on other projects, and repeated success with good silicon on 
our projects using two-state RTL simulation with random initialization has 
convinced us that any crafting of the X-state in the RTL is misguided. 

It is better to eliminate thinking about the X in RTL Verilog, and focus the 
project’s Verilog style towards the fastest cycle-based, two-state RTL simula-
tion possible. Random initialization in the cycle-based simulator can bring out 
the start-up problems previously thought to be addressed by the X-state in 
standard Verilog RTL simulations. 

Our method is to run 99% of our simulations at the RT-Level using 
cycle-based, two-state techniques with random initialization, and 1 % of our 
simulations at the gate-level with X’s. So far, this method has caught all of our 
start-up state problems before silicon. We usually detect and fix one last 
start-up state problem for each new chip design using X-state simulation at 
the gate-level before going to first silicon [Bening 1999b]. 
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7.4.1.3 Other Forms of State Machine 

To the other forms of state machines, we apply the Verifiable Subset
Principle (see Chapter 3). Applying this principle to a design project using 
two-state RTL simulation, the case and the casex (for its wild card) with
control variables are a simple and sufficient subset. This policy rules out: 

• constant case test expressions, 

• implicit state machines, and 

• casez.

Each of these adds to the complexity of the Verilog, and have their own 
peculiar ways of compounding the complexities of simulation differences 
between the RTL and gate-level. 

Constant case test expressions. Case statements with a constant (typically a
‘1’) in their test expression combined with parallel_case as shown in [Example
7-15] produce RTL and gate-level simulation differences in the same way as
the case/casex statement with a controlling signal as shown in [Example

Example 7-15
7-14].

casex (1’b1) // RTL synthesis parallel_case 
c_hot[7] : c_code = 3’b000;
c_hot[6] : c_code = 3’b001;
c_hot[5] : c_code = 3’b010;
c_hot[4] : c_code = 3’b011;
c_hot[3] : c_code = 3’b100;
c_hot[2] : c_code = 3’b101;
c_hot[1] : c_code = 3’b110;
c_hot[0] : c_code = 3’b111;

endcase

Since constant case test expressions are another way to say the same thing, 
we follow the Verifiable Subset Principle (see Chapter 3) and rule it out.

Implicit state machines. [Example 7-16] illustrates Verilog code for an 
implicit state machine. Synthesis tools support implicit state machines. 
Implicit state machines eliminate the case/casex statement from the state
machine and merge the state transitions into the single flow of control. While 
Arnold et al. [1998] described and advocated implicit state machine techniques 
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in Verilog, they noted that designers need to take care to avoid simulation and 
synthesis differences. 

Example 7-16.

always
begin

@ (posedge ck);

@ (posedge ck);

@ (posedge ck);

@ (posedge ck);

e1 <= 2’b00;

e1 <= 2’b01;

e1 <= 2’b11;

e1 <= 2’b10;
end

Implicit state machines do not fit into our verifiable RTL design style for 
two reasons: 

• They introduce another set of complex rules regarding potential RTL simu- 
lation and synthesized gate simulation differences. 

• They merge the designer’s functional intent with the state machine state 
register storage. 

casez. In its two-state semantics, the casez is exactly the same as the casex.
They both provide the very useful wildcard ‘?’ “don’t care’’ option for 
case-item constants. Based on alphabetical order, we picked the casex to sup-
port, and avoid any issues regarding differences in RTL and gate-level simula- 
tion of the casez.

In verifiable RTL design style, we accommodate the Z-state by encapsula- 
tion and assertions as described in section 6.1.4 of chapter 6. The encapsula- 
tion methods for tri-state receivers shown there provide better verification 
than the “don’t care’’ treatment of the Z-state in casez statements.

7.4.1.4 Initial blocks 

Designers generally enclose initial blocks between translate off/on direc- 
tives. This method explicitly gives more information the RTL simulation than 
to the synthesized gate-level simulation. The designers generally do this to 



178 Chapter 7

temporarily bypass start-up sequence testing, and go straight to testing the 
post-reset functionality of the block, chip and systems. 

Example 7-17

module dff (q, d, ck);
output [7:0] q;
input [7:0] d;
input ck;

always @(posedge ck)
q <= d;

// rtl_synthesis off
initial

// rtl_synthesis on 
endmodule

q = 8’h00;

[Example 7-17] places initialization code directly into the module. This 
method of bypassing initialization testing typically invalidates any later ini-
tialization testing with RTL simulation. 

A better way to bypass or inclusion initialization testing is to make the 
decision conditional in the testbench, outside the chip design. This method 
localizes the control of whether a test runs with or without initialization test- 
ing.

The best way to control initialization is encapsulating it in an $Initial-
State(q) user task called from within the initial procedural block, replacing
the assignment to q. This localizes the decision-making as to whether to apply
initialization within the user task, so that it does not have to be repeated in 
block, chip and system testbenches. This encapsulation is described in Chap- 
ter 3 as another one of the benefits resulting from the OOHD methodology. 

7.4.2 Inadvertent Coding Errors 

This section describes specific examples of inadvertent Verilog coding 
errors that can cause differences between the simulated behavior of the RTL 
Verilog and the gate-level Verilog. Designers with any experience in RTL 
Verilog quickly become familiar with all of these kinds of coding errors, which 
generally reinforces their locking linting into their design process as the first 
step.
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7.4.2.1 Incomplete Sensitivity List 

Incomplete sensitivity lists are the most well-known source of RTL simu- 
lation problems, RTL and gate-level simulation differences, and annoyance to 
logic designers. [Example 7- 18] illustrates an incomplete sensitivity list, 
where the “or z” required for correct RTL event-driven simulation functional-
ity is omitted. 

Example 7-18

module b (p, w, x, y, z);
input [7:0] w, x, y, z;
output [7:0] p;
wire [7:0] w, x, y, z;
reg [7:0] p, r, s;
always @(w or x or y) // or z omitted

begin
r = w I x;
s = y l z;
p = r & s;

end
endmodule

7.4.2.2 Latch Inference in functions 

Inadvertent latch inferences happen because of omitted default 
assignments in if and case/casex statements. Outside of functions, inadvertent 
latch inferences are indeed design errors, but they simulate the same in RTL 
and gate-level simulation models. 

Within functions, inadvertent latch inferences due to omitted default 
assignments create RTL and gate-level simulation differences. The RTL 
function behaves as a latch in simulation, while the synthesize gates behave as 
combinational logic, with no state storage. 

7.4.2.3 Incorrect Procedural Statement Ordering 

Synthesized gates in the gate-level simulation behave as if a sequence of 
combinational logic statements is ranked ordered correctly, even where they 
are not. RTL simulations can behave as a latch, hanging on to previously 
assigned values for out-of-order assignments. 

The procedural block in [Example 7-19] has an out-of-order assignment to 
p. If only y and z change within an evaluation cycle, the changes that they
cause will not be seen on p until the next evaluation cycle. The simulation of
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the gates synthesized from this RTL propagates changes in y and z through to
p within the same evaluation cycle.

Example 7-19

module b (p, w, x, y, z);
input [7:0] w, x, y, z;
output [7:0] p;
wire [7:0] w, x, y, z;
reg [7:0] p, r, s;
always @(w or x or y or z)

begin
r = w I x; // rank 1  
p = r & s; // rank 2  
s = y l z; // rank 1  

end
endmodule

In our experience, designers correctly sequence statements within proce- 
dural blocks as they initially write their Verilog over 99% of the times, but not 
100%. Out of every 100,000 lines of Verilog, they may make one or two mis-
takes in their procedural statement sequencing. While RTL simulation may
reveal these errors eventually, it is much more productive to detect them 
immediately after design entry through linting. 

7.4.3 Timing 

Verifiable RTL design requires that a design project encapsulate all Verilog 
containing timing or clock-generation. A project that allows RTL timing 
control decisions to be distributed throughout the team members will likely 
create difficulties in their verification process. In addition to RTL and 
gate-level simulation differences, other difficulties include: 

• Haphazard use of delays in a design adds labor (or roadblocks) in pro- 
gressing to cycle-based simulation and emulation. 

• Logic races cause test differences (and failures) in moving a simulation 
from one vendor’s simulator version to another version (or vendor). 

• Verilog practices that use delays and introduce races in the RTL design 
complicate the timing verification of the RTL model. Commingling timing 
with the RTL function violates the Orthogonal Verification Principle 
(see Chapter 2). 
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7.4.3.1 Delays 

Delay specification has no place in a designer’s RTL Verilog. Because syn-
thesis discards all delay values in the RTL, their use invariably results in con-
fusion to the engineers reading the Verilog at a minimum, and differences 
between the simulation behavior of RTL and the synthesized gate-level logic. 
The following examples go from bad to worse practices. 

Flip-flop assignment delays. The [Example 7-20] of delay usage in flip-flop 
model blocking assignments is fairly widespread practice. 

Example 7-20

module dff_2 (q, ck ,rst , d);
input clk ,rst;
input [1:0] d;

reg [1:0] q;
always @(posedge ck)

output [1:0] q;

q <= #1 (rst == 1’b0) ? d : 2’b00;
endmodule

A feature of putting a delay in the nonblocking assignment is that it sepa- 
rates the controlling clock edge from the resultant q output change in a wave-
form viewer. Without the delay, the waveform display showing the clock and 
the data change appearing to happen at the same time is disconcerting to some 
designers.

A project must globally control the flip-flop assignment delay to be less 
than the clock period (to prevent long-path problems) and to be identical (for 
simulation efficiency). Data changes in q will be late if the delay #1 exceeds
the clock period. If a project has many different delay values for flip-flop 
assignments, the simulator has to revisit all of the changed outputs at the dif- 
ferent times when they change. 

Flip-flop assignment delays may mask simulation event clock skew. This 
skew is not physical clock skew, but skew in the RTL simulation events. 

Masking simulation event clock skew with unit delays in flip-flop
non-blocking assignments is regarded as a feature in some design teams. 
However, we currently feel that skew in clock fanout paths reflects a poorly 
disciplined RTL design practice. It should be detected and cleaned out. Skew 
can sneak into the clock fanout paths of an RTL design when designers slip up 
and put non-blocking assignments or gate-level cells with “realistic delays” in 
their clock fanout paths. 
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In verifiable RTL design, the entire clock fanout must be either 

• connections through ports, 

• non-blocking assignments in procedural blocks, or 

• assign statements. 

Although we have used flip-flop assignment delays in past projects, we 
currently are against using them in our projects, because of the way that they 
mask inadvertent introduction of skew in the clock fanout. 

It is important to note that if a project’s leadership changes its mind about 
adding or removing the unit delay from all flip-flop assignments, the OOHD 
library-based technique localizes the change to the flip-flop library file. 

Testbench delays. Engineers often write Verilog testbenches in a less disci- 
plined manner than the way that they write Verilog for their chip designs. As 
shown in [Example 7-21] (a), they sometimes introduce delays to make the 
testbench insert control states or observe states just after a clock edge. 

Example 7-21

a) Custom-timed inserted states 

always @(posedge ck)
begin begin 

b) Common-timed inserted states 

always @(posedge ck)

#0.005; ‘DELAY_I
o_ad_valid <= 2’bz; o_ad_valid <= 2’bz;
o_ad_validb <= 2’bz; o_ad_validb <= 2’bz;
o_trans_id <= 6’bz; o_trans_id <= 6’bz;
o_master_id <= 3’bz; o_master_id <= 3’bz;

end end 

b) Clock-timed inserted states 

always @(posedge ck_i)
begin

o-ad-valid <= 2’bz;
o-ad-validb <= 2’bz;
o_trans_id <= 6’bz;
o_master_id <= 3’bz;

end

Use of custom delay values to tune timing in test benches is not good for 
verification. It hinders application of cycle-based simulation by complicating 
the simulator’s evaluation cycles. It also makes it impossible to synthesize the 
test bench into gates to include it in an emulation box along with gates for the 
chip design. 
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A better way is globally specifying the timing with a project-wide named 
constant delay for inserted states as shown in [Example 7-21] (b). Use of a 
named constant helps establish a project-wide time for inserting values, and 
allows for refinement of that time. 

The best way is encapsulating the timing for observability and controlla- 
bility within a special clock generator as shown in [Example 7-21] (c). This 
encapsulation supports both emulation synthesis and cycle-based simulation 
of the test bench along with the hardware design under test. 

One disadvantage of using a special clock is the need to fan it out. Within 
the testbench module environment, the fanout probably is not a burden. But 
for test logging and assertion module instances within in the module hierarchy 
of the device under test, adding ports and connections to fanout the test clock 
timing is burdensome. 

#0 delays. One form of timing control that is especially bad is insertion of #0 
delays to fine-tune the event ordering for a particular simulator. These may 
work around a race for a particular version of a particular vendor’s simulator, 
but too often get in the way migrating to the another version of a simulator. 

7.4.3.2 Race Conditions 

Logic races arise when engineers code their Verilog in a way that makes 
the resultant state dependent on the evaluation order of two procedure blocks 
triggered by the same event. The most frequent cases of logic races we have 
seen are in testbenches where the engineer used blocking assignments in two 
interrelated clock-triggered procedural blocks, as shown in [Example 7-22]
(a).

The evaluation order in this example affects whether a simulation propa- 
gates changes from a to c in a single clock cycle or two clock cycles. If the
first always block evaluates first, changes propagate from a to c in a single
clock cycle. If the second always block evaluates first, changes propagate
from a to c in two clock cycles.

The evaluation order in [Example 7-22] (a) cannot be guaranteed between
two different vendor’s simulators, or even successive version of Verilog simu-
lators from the same vendor. Some people regard this as a bug in Verilog. In 
other viewpoints, it is a feature, since it allows enhancements to simulation 
performance to be unconstrained by a rigid evaluation order for simultaneous 
events.
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Gates synthesized from [Example 7-22] (a) behave as though both assign- 
ments are non-blocking assignments as in (b), and take a second clock cycle
to propagate changes from a to c.

Example 7-22

a) Blocking assignments with 

always @(posedge ck)
begin begin 

end end 
always @(posedge ck)
begin begin 

end end

b) Non-blocking assignments 
a race eliminate the race 

always @(posedge ck)

b = a; b <= a;

always @(posedge ck)

c = b; c <= b;

c) Sequential/combinational d) Combined combinational 
blocks eliminate the race block eliminates the race 

always @(posedge ck) always @(a)
begin begin

b = a;
end c = b;
always @(b) end
begin

end

b <= a;

c = b;

The (b), (c), and (d) in [Example 7-22] show ways of eliminating the race 
in (a). Each of them has a different behavior, but their state outcome is inde-
pendent of a simulator’s simultaneous event evaluation order. 

(b) takes a second clock cycle to propagate changes from a to c.

(c) propagates changes from a to c in a single clock cycle.

(d) propagates changes from a to c in response to changes in a.

Engineers can use the newer race analysis features in waveform viewers, 
logic simulators, and static lint checkers to help detect and diagnose logic race 
conditions, then change their logic timing controls to more precisely specify 
the intended evaluation order. 
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7.5 EDA Tool Vendors
Design projects increasingly rely on EDA vendor tools for their success in

design verification. In addition to contributing to the success in verification on
design projects, the EDA vendor verification tools too often add difficulties to
a project’s verification process.

Good Vendor Principle

Verification tool vendors must support real user needs in a project’s
design environment, not the tool vendor’s preferred environment.

The following three sections go into detail about difficulties we have
encountered that could have been avoided if the vendors only knew ahead of
time about the project’s design environment. The difficulties include:

• library name clashes/profiling support,

• existing command-line/script “make” environments, and

• proprietary tool-directing comments.

To be fair, projects asking vendors to comply with the Good VendorPrin-
ciple should be complying with the Disciplined User Principle (see chapter
1) in their own work.

7.5.1 Tool Library Function Naming

Vendor simulation support library developers have generally not been
completely aware of the scale of the system simulation models into which
design projects link functions from multiple libraries. In our system simula-
tion model executables, we have seen fifty or more function libraries linked
with the compiled Verilog, totaling 30,000 to 120,000 functions.

As explained in Chapter 6, for avoiding integration name clashes and for
profiling support within such a large name space, all functions must use a pre-
fix common to all functions within each library.

Part of the quality testing and evaluation process at both the vendor and the
user site should include review of the function entry point names, to ensure 
that they all have a common prefix. You can check for this in UNIX/LINUX 
environments by going to the library directory and entering: 

nm libcv2c.a l grep entry l grep -v static l more

where libcv2c.a is a project-specific PLI library being examined. The list
should contain names with a common prefix as shown below. 
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cv2c_report_percentages I 2576lexternlentry I$CODE$
cv2c_run_thread I 22081externlentry I$CODE$
cv2c_runtime_check I 22801externlentry I$CODE$
cv2c_run_tq I 1208lexternlentry I$CODE$
cv2c_stopwatch I 480lexternlentry I$CODE$

Simulation tool developers vary in the degree to which they apply good 
prefix-based naming practices in their library functions. Sampling some 
libraries at the time of this writing, we see that the library developers gener- 
ally have used a prefix-based naming for their functions to some degree, as
shown in [Table 7-1].

...

Table 7-1. Examples of Library function naming prefix usage.

Prefixed No prefix Tool

In-house library 159 18 

Coverage 27 8 494 

Wave Trace 479 83 

Simulator 713 1881 

We expect to see better use of prefixes on library functions in future 
releases of their simulation tool products.

7.5.2 Command Line Consistency 

After Cadence opened the Verilog language in 1990, the first independent 
vendors began supplying simulators and support tools that closely followed the 
entire Cadence Verilog Reference Manual. This included the basic command 
line options, such as +incdir, -f, -F and +define. Users set up their scripts to
run Verilog-based tools invoking these common command line options. 

Since the arrival of these first Verilog-based tools, some vendors have 
departed from the original command line options to supply their own methods 
for invoking include directories, specifying file lists and defining compiler 
options. From our own experiences with vendor tool evaluations, we find that 
vendors depart from the original options for different reasons. 

• Some tools have their origins in VHDL versions of a predecessor tool that 
the vendor extended for Verilog. Instead of a C, UNIX and script-based
origin like Verilog, these tools reflect context semantics that are indepen- 
dent of a specific operating system. 



The Bad Stuff 187 

• The original command line options are not in the IEEE 1364 [1995] stan- 
dard. The tool developers who are not aware of the large investment users 
already have in the original options may think that adherence to these 
options is not important. 

• It appears that some vendors are introducing frameworks so that their Ver-
ilog tools run in a consistent manner within their own domain. 

Whatever the reasons, departing from support of the basic command line 
options is not a good idea. 

• It adds to the set up time for evaluation and integration of new EDA tools. 
The scripts that support the standard option lists will not plug and play. 

• The delay in setting up new tools may cause a user to run out of time for 
evaluation before fully realizing the advantages of the tools. 

Vendors who listen carefully to their customers quickly get the message 
and generally add a method that supports these options, at least as an exten- 
sion to their own manner of invoking their tool. 

7.5.3 Vendor Specific Pragmas 

Support for design tools beyond the Verilog language’s original applica- 
tion to the Cadence Verilog XL™ simulator requires additional semantic 
information. Synthesis, coverage, and cycle-based simulation are examples of 
Verilog-based tools that include additional lines to direct them. 

The common practice that has grown up across Verilog-based tools is the 
use of tool-directing comments, as shown below. 

// rtl_synthesis off 
// Diagnostic non-hardware Verilog code 
// rtl_synthesis on 

What is particularly disconcerting is the way that some Verilog tool ven- 
dors format their tool-directing comments to include their company or tool 
name.

// <vendor-name> coverage off 
// Diagnostic non-hardware Verilog code 
// <vendor-name> coverage on 

For the user-oriented tool developers, the better way is to format their 
tool-directing comments in a form that is open, and a candidate for standard- 
ization. The IEEE Verilog RTL synthesis standardization group [IEEE 1364.1 
1999] proposes tool-directing comments that do not specify the vendor or any 
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proprietary tool name. This consensus-building should start at the original 
inception of the new tool with a standardization-oriented design. 

Here is a general organization of a standardization-oriented tool-directing 
comment:

//rtl_ <application-name> <application-keyword>

where <application-name> is a generic name for an application, such as cov-
erage or synthesis.

7.6 Design Team Discipline 
Poor design team discipline invariably drives up project costs, increases 

frustration with design tools, and results in project schedule delays. In the his-
tory of technology, certain teams of intelligent, creative engineers have been 
exemplary in following a high degree of design discipline. Other teams have 
included engineers who misdirected their creativity and upset the overall 
design and verification process flow. 

Since each new project brings a new mix of engineers, design goals, and 
verification technologies, the project has to revisit the process by which they 
establish a design team discipline. The essential ingredient in the process is 
application of the Disciplined User PrincipIe (see chapter 1) 

Readers with prior RTL design project experience will recognize the vary- 
ing degrees of designer discipline they have seen, and have their own horror 
stones. The following are some of our experiences with lapses in chip and 
module level design team discipline. 

Chip level. A project had one chip design out of five that did not follow all of 
the verifiable design practices of the other four. Some of the deviations from 
the common design practices included: 

• mixed upper and lower case in names, 

• multiple modules per file, where the name of the file had no relationship to 
the names of any of the modules included, 

• X-state assignments and tests, and 

• incompletely specifiedcase/casex statements.

Consequently, this chip could not use the full-chip fast RTL-to-gate equiv- 
alence check or the cycle-based simulation technologies. Other schedule 
delays came when other designers were hampered in their understanding of 
this chip as they tried to help with the design and verification. 
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After the frustrations in working on this chip, the project decided to spend 
the six labor-weeks to upgrade this chip design to the common verifiable RTL 
style used on the other four chips. 

Module level. Out of the hundreds of modules that comprised each of the 
other four chips in the same project, there were two modules that used 
in-lined non-blocking procedural assignments instead of library module 
instances for flip-flops. 

This meant that as the engineers added verification tool support changes to 
the flip-flop modules in the libraries, they had to remember to revisit the 
non-blocking procedural assignments outside the library in the chip modules. 
This was a minor hindrance in the project flow, so the project postponed cor-
rective action for the next project. 

Table 7-2. Verifiable RTL Unsupported Verilog Keywords 

and highz1 rcmos task 
buf ifnone real time 
bufif0 integer realtime tran 
bufif1 join release tranif0 
casez large repeat tranif1 
cmos macromodule rnmos triand 
deassign medium rpmos trior 
disable nand rtran trireg 
edge nmos rtranif0 vectored 
endprimitive nor rtranif1 wait 
endspecify not scalared wand 
endtable notif0 small weak0 
endtas k notif1 specify weak1 
event pmos specparam while 
for primitive strong0 wor 
force pull0 strong1 xnor 
forever pull1 supply0 xor 
fork pulldown supply1
highz0 pullup table

7.7 Language Elements 

7.7.1 Keywords 

Some readers may not have read Chapter 3 and have skipped to this chap- 
ter directly. For them, [Table 7-2] repeats the list of Verilog keywords that we
do not support for use in RTL chip designs. 

As mentioned in chapter 3, most of these are for gate-level, not RTL 
design. Some that are not gate-level are more for test benches (for, force,
release). The for also targets memory library elements.
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7.7.2 Parameters 

Although defparm and parameter are not in our bad keywords list, we
discourage their use in RTL design. The main reasons that parameters run into 
troubles in a verification flow are: 

• parameters often cause simulation run-time penalties, for configuration 
tests that could have been done at compile time, and 

• the quality of parameter implementation varies between different vendor 
verification tools. 

We favor use of ‘define and macro preprocessing (see chapter 3) for our
design work. We use ‘define for specification of all constants. Where others
might turn to parameters for their ability to specify constants per-instance, we 
use macro preprocessing. 

Here are some specific examples of ‘define and macro preprocessing in
place of parameters. 

• Code inclusion controls 

Use of parameters for code inclusion control is generally very bad for sim- 
ulation performance. For modules that have several functional variants, 
specify a separate library module type for each functional variant. Where 
there is a global inclusion control on all instances within a design, use 
‘ifdef-‘else-‘endif controlled by a compiler option.

• Bit width, memory array sizes 

Where a design has the same function applied to different widths and 
memory array sizes for each instance, parameters may seem attractive. 
However, macro preprocessing can do the same per-instance width and 
size adjustments, and add the benefit of generating application-oriented
libraries.

• case, casex statement state machine constants

Since designers do not assign state machine constants per-instance, use of
parameters for these constants is questionable. The ‘define provides the
same constant definition by name capability for state machine constants. 

7.7.3 User-Defined Primitives 

Even though this book is about RTL design, and we rule out the gate-level
keywords primitive and endprimitive from our RTL style, it is important to
emphasize that, for verification processes, user-defined primitives (UDP’s) are 
VERY bad stuff both at the RTL and gate-level.
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Model checking and equivalence checking products generally support 
combinational UDP’s in later releases. For sequential UDP’s, verification 
product support remains questionable. Deriving the Boolean functionality 
from sequential UDP’s is a far more difficult process than deriving Boolean 
functionality from combinational UDP’s. 

Successful RTL verification counts on the RTL design being the equivalent 
of the gate-level design. Sequential UDP’s that impede RTL-to-gate-level 
equivalence checking wreck the whole RTL-based verification process, 
described in Chapters 2 through 5. 

Compared with their competitors’ projects that insist on UDP’s in the Ver-
ilog, projects that completely eliminate UDP’s from their Verilog are able to 
apply releases of advanced verification tools earlier and with more successful 
results. In our project work, we eliminate the vestigial UDP’s by applying the 
library-based object-oriented methods described in Chapter 3. 

Elimination of UDP’s is a key application of the Disciplined User Princi- 
ple presented in Chapter 1, by which projects can avoid problems with Ver- 
ilog tools, especially formal tools. 

7.8 Summary 
Compared with most of the current publicly available books and papers on 

RTL design, the two most revolutionary ideas in this chapter are classifying: 

• in-line flip-flop declarations, and 

• the RTL X-state 

as bad stuff. Through Barnes and Warren [1999], anonymous referee com-
ments, and informal communication channels, we are aware of other design 
shops outside of our own company who have adopted encapsulated grouping 
of storage elements as well as thrown out the X from their RTL design. 

On the other topics, there seems to be general agreement that the following 
are bad stuff 

• RTL and gate-level simulation differences, 

• RTL styles that hamper simulation performance, 

• poor design team discipline, 

• EDA tool vendors who have no understanding of the users’ environment, 

• lack of RTL language element policies, and 

• use of UDP’s.
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On one hand, designers are looking for specific examples of what is bad, and 
why it is bad. On the other hand, some readers in general agreement with 
many of the bad stuff ideas may disagree with details, or may have much 
more to add to some or all areas. That is as it should be. The authors have 
changed their minds about details during the writing of this book, and will 
continue to do so in the future. That is called progress.


