Skip to main content

Abstract

Global climate models (GCMs) are the fundamental drivers of regional climate-change projections (IPCC 2007). GCMs allow us to characterize changes in atmospheric circulation associated with human causes at global and continental scales. However, because of the planetary scope of the GCMs, their resolution, or level of detail, is somewhat coarse. A typical GCM grid spacing is about 62 miles (100 km) or greater, which is inadequate for creating projections and evaluating impacts of climate change at a regional scale. Thus, a “downscaling” procedure is needed to provide finer spatial detail of the model results.

Chapter citation: Cayan, D., M. Tyree, K. E. Kunkel, C. Castro, A. Gershunov, J. Barsugli, A. J. Ray, J. Overpeck, M. Anderson, J. Russell, B. Rajagopalan, I. Rangwala, and P. Duffy. 2013. “Future Climate: Projected Average.” In Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment, edited by G. Garfin, A. Jardine, R. Merideth, M. Black, and S. LeRoy, 101–125. A report by the Southwest Climate Alliance. Washington, DC: Island Press.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barnett, T., R. Malone, W. Pennell, D. Stammer, B. Semtner, and W. Washington. 2004. The effects of climate change on water resources in the west: Introduction and overview. Climate Change 62:1–11, doi:10.1023/B:CLIM.0000013695.21726.b8.

    Article  Google Scholar 

  • Barnett, T. P., D. W. Pierce, H. Hidalgo, C. Bonfils, B. Santer, T. Das, G. Bala, et al. 2008. Human-induced changes in the hydrology of the western United States. Science 316:1080–1083.

    Article  Google Scholar 

  • Barsugli, J. J., S-I. Shin, and P. D. Sardeshmukh. 2006. Sensitivity of global warming to the pattern of tropical ocean warming. Climate Dynamics 27:483–492, doi:10.1007/s00382-006-0143-7.

    Article  Google Scholar 

  • Bieda, S.W. III, C. L. Castro, S. L. Mullen, A. Comrie, and E. Pytlak. 2009. The relationship of transient upper-level troughs to variability of the North American monsoon system. Journal of Climate 22:4213–4227.

    Article  Google Scholar 

  • Bonfils, C., B. D. Santer, D. W. Pierce, H. G. Hidalgo, G. Bala, T. Das, T. P. Barnett, et al. 2008. Detection and attribution of temperature changes in the mountainous western United States. Journal of Climate 21:6404–6424, doi:10.1175/2008JCL12397.1.

    Article  Google Scholar 

  • Castro, C. L., R. A. Pielke, Sr., and J. O. Adegoke. 2007. Investigation of the summer climate of the contiguous U.S. and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). Journal of Climate 20:3844–3865.

    Article  Google Scholar 

  • Castro, C. L., R. A. Pielke, Sr., J. O. Adegoke, S. D. Schubert, and P. J. Pegion. 2007. Investigation of the summer climate of the contiguous U.S. and Mexico using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. Journal of Climate 20:3866–3887.

    Article  Google Scholar 

  • Cayan, D. R., T. Das, D. W. Pierce, T. P. Barnett, M. Tyree and A. Gershunov. 2010. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences 107:21271–21276.

    Article  CAS  Google Scholar 

  • Cayan, D., M. Tyree, M. Dettinger, H. Hidalgo, T. Das, E. Maurer, P. Bromirski, N. Graham and R. Flick. 2009. Climate change scenarios and sea level rise estimates for the California 2009 climate change scenarios assessment. Final paper CEC-500-2009-014-F. Np: California Climate Change Center. http://www.energy.ca.gov/2009publications/CEC-500-2009-014/CEC-500-2009-014-F.PDF.

    Google Scholar 

  • Christensen, N., and D. P. Lettenmaier. 2007. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrology and Earth System Sciences 11:1417–1434.

    Article  Google Scholar 

  • Cook, E. R., C. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle. 2004. Long-term aridity changes in the western United States. Science 306:1015–1018.

    Article  CAS  Google Scholar 

  • Dai, A. 2006. Precipitation characteristics in eighteen coupled climate models. Journal of Climate 19:4605–4630.

    Article  Google Scholar 

  • Das, T., H. Hidalgo, D. Cayan, M. Dettinger, D. Pierce, C. Bonfils, T.P. Barnett, G. Bala and A. Mirin. 2009. Structure and detectability of trends in hydrological measures over the western United States. Journal of Hydrometeorology 10:871–892, doi:10.1175/2009JHM1095.1.

    Article  Google Scholar 

  • Das, T., D. W. Pierce, D. R. Cayan, J. A. Vano, and D. P. P. Lettenmaier. 2011. The importance of warm season warming to western U.S. streamflow changes. Geophysical Research Letters 38: L23403, doi:10.1029/2011GL049660.

    Article  Google Scholar 

  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan. 2011. Atmospheric rivers, floods and the water resources of California. Water 3:445–478.

    Article  Google Scholar 

  • Dominguez, F., J. Cañon, and J. Valdes. 2009. IPCC-AR4 climate simulations for the southwestern U.S.: The importance of future ENSO projections. Climatic Change 99:499–514, doi:10.1007/s10584-009-9672-5.

    Article  Google Scholar 

  • Dominguez, F., P. Kumar, and E. R. Vivoni. 2008. Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part II: North American monsoon region. Journal of Climate 21:5187–5203.

    Google Scholar 

  • Douglas, A. V., and P. J. Englehart. 2007. A climatological perspective of transient synoptic features during NAME 2004. Journal of Climate 20:1947–1954.

    Article  Google Scholar 

  • Favre, A., and A. Gershunov. 2009. North Pacific cyclonic and anticyclonic transients in a global warming context: Possible consequences for western North American daily precipitation and temperature extremes. Climate Dynamics 32:969–987.

    Article  Google Scholar 

  • Gangopadhyay, S., T. Pruitt, L. Brekke, and D. Raff. 2011. Hydrologic projections for the western United States. Eos Transactions AGU 92:441, doi:10.1029/2011E0480001.

    Article  Google Scholar 

  • Gao, X., J. Li, and S. Sorooshian. 2007. Modeling intraseasonal features of 2004 North American monsoon precipitation. Journal of Climate 20:1882–1896.

    Article  Google Scholar 

  • Gutzler, D. S., H-K. Kim, R. W. Higgins, H-M. H. Juang M. Kanamitsu, K. Mitchell, K. Mo, et al. 2005. The North American monsoon Model Assessment Project: Integrating numerical modeling into a field-based process study. Bulletin of the American Meteorological Society 86:1423–1429.

    Article  Google Scholar 

  • Hawkins, E., and R. T. Sutton. 2009. The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society 90:1095–1107.

    Article  Google Scholar 

  • Hidalgo, H. G., T. Das, M. D. Dettinger, D. R. Cayan, D. W. Pierce, T. P. Barnett, G. Bala, et al. 2009. Detection and attribution of stream flow timing changes to climate change in the western United States. Journal of Climate 22:3838–3855, doi:10.1175/2009JCLI2470.1.

    Article  Google Scholar 

  • Hoerling, M., and J. Eischeid. 2007. Past peak water in the Southwest. Southwest Hydrology 6 (1): 18–35.

    Google Scholar 

  • Hoerling, M., D. Lettenmaier, D. Cayan, and B. Udall. 2009. Reconciling projections of Colorado River streamflow. Southwest Hydrology 8 (3): 20–21, 31.

    Google Scholar 

  • Ikeda, K., R. Rasmussen, C. Liu, D. Gochis, D. Yates, F. Chen, M. Tewari, et al. 2010. Simulation of seasonal snowfall over Colorado. Atmospheric Research 97:462–477, doi:10.1016/j.atmosres.2010.04.010.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.L. Miller. Cambridge: Cambridge University Press. http://www.ipcc.ch/ipccreports/ar4-wg1.htm.

    Google Scholar 

  • Janowiak, J. E., V. J. Dagostaro, V. E. Kousky, and R. J. Joyce. 2007. An examination of precipitation in observations and model forecasts during NAME with emphasis on the diurnal cycle. Journal of Climate 20:1680–1692.

    Article  Google Scholar 

  • Knowles, N., and D. R. Cayan. 2002. Potential effects of global warming on the Sacramento/ San Joaquin watershed and the San Francisco estuary. Geophysical Research Letters 29:1891, doi:10.1029/2001GL014339.

    Article  Google Scholar 

  • Knowles, N., M. D. Dettinger, and D. R. Cayan. 2006. Trends in snowfall versus rainfall in the western United States. Journal of Climate 19:4545–4559.

    Article  Google Scholar 

  • Lambert, S. J. 1995. The effect of enhanced greenhouse warming on winter cyclone frequencies and strengths. Journal of Climate 8:1447–14452.

    Article  Google Scholar 

  • Lambert, S. J., and J. C. Fyfe. 2006. Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Climate Dynamics 26:713–728.

    Article  Google Scholar 

  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli. 2007. Radar-observed characteristics of precipitating systems during NAME 2004. Journal of Climate 20:1713–1733.

    Article  Google Scholar 

  • Laprise, R., R. de Elía, D. Caya, S. Biner, P. Lucas-Pincher, E. Diaconescu, M. Leduc, A. Alexandru, and L. Separovic. 2008. Challenging some tenets of regional climate modelling. Meteorology and Atmospheric Physics 100:3–22, doi:10.1007/s00703-0080292-9.

    Article  Google Scholar 

  • Liang, X., D. P. Lettenmaier, E. Wood, and S. J. Burges. 1994. A simple hydrologically based model of land surface water and energy fluxes for General Circulation Models. Journal of Geophysical Research 99:14415–14428.

    Article  Google Scholar 

  • Liang, X-L., J. Zhu, K. E. Kunkel, M. Ting, and J. X. L. Wang. 2008. Do CGCMs simulate the North American monsoon precipitation seasonal-interannual variability? Journal of Climate 21:4424–4448.

    Article  Google Scholar 

  • Lu, J., G. A. Vecchi, and T. Reichler. 2007. Expansion of the Hadley cell under global warming. Geophysical Research Letters 34: L06805, doi:10.1029/2006GL028443.

    Article  Google Scholar 

  • Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy. 2007. Fine-resolution climate projections enhance regional climate change impact studies. EOS Transactions AGU 88:504.

    Article  Google Scholar 

  • Maurer, E. P., H. G. Hidalgo, T. Das, M. D. Dettinger, and D. R. Cayan. 2010. The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrology and Earth System Sciences 14:1125–1138.

    Article  Google Scholar 

  • Maurer, E. P., I. T. Stewart, C. Bonfils, P. B. Duffy, and D. Cayan. 2007. Detection, attribution, and sensitivity of trends toward earlier streamflow in the Sierra Nevada. Journal of Geophysical Research 112: D11118, doi:10.1029/2006JD008088.

    Article  Google Scholar 

  • Mearns, L. O., F. Giorgi, P. Whetton, D. Pabon, M. Hulme, and M. Lal, 2003. Guidelines for use of climate scenarios developed from Regional Climate Model experiments. N.p.: Data Distribution Centre of the Intergovernmental Panel on Climate Change. http://www.ipcc-data.org/guidelines/RCM6.Guidelines.October03.pdf.

    Google Scholar 

  • Mearns, L. O., W. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian. 2009. A regional climate change assessment program for North America. Eos Transactions AGU 90:311.

    Article  Google Scholar 

  • Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, et al. 2007. Global climate projections. In Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, SM.10-1 - SM.10-8. Cambridge: Cambridge University Press. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter10-supp-material.pdf.

    Google Scholar 

  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer. 2008. Stationarity is dead: Whither water management? Science 319:573–574.

    Article  CAS  Google Scholar 

  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier. 2005. Declining mountain snowpack in western North America. Bulletin of the American Meteorological Society 86:39–49.

    Article  Google Scholar 

  • Nakićenović, N., and R. Swart, eds. 2000. Special report on emissions scenarios: A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang. 2008. The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. Journal of Hydrometeorology 9:728–743.

    Article  Google Scholar 

  • Pierce, D. W., T. P. Barnett, H. G. Hidalgo, T. Das, C. Bonfils, B. D. Santer, G. Bala, et al. 2008. Attribution of declining western U.S. snowpack to human effects. Journal of Climate 21:6425–6444, doi:10.1175/2008JCLI2405.1.

    Article  Google Scholar 

  • Pierce, D. W., T. P. Barnett, B. D. Santer, and P. J. Gleckler. 2009. Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences 106:8441–8446, doi:10.1073/pnas.0900094106.

    CAS  Google Scholar 

  • Pierce, D. W., T. Das, D. R. Cayan, E. P. Maurer, N. L. Miller, Y. Bao, M. Kanamitsu, et al. 2012. Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dynamics 39, published online, doi: 10.1007/s00382-012-1337-9.

  • Ray, A. J., J. J. Barsugli, K. B. Averyt, K. Wolter, M. Hoerling, N. Doesken, B. Udall, and R. S. Webb. 2008. Climate change in Colorado: A synthesis to support water resources management and adaptation. Boulder, CO: Western Water Assessment. http://cwcb.state.co.us/public-information/publications/Documents/ReportsStudies/ClimateChangeReportFull.pdf.

    Google Scholar 

  • Ruff, T. W., Y. Kushnir, and R. Seager. 2012. Comparing 20th and 21st century patterns of inter-annual precipitation variability over the western United States and northern Mexico. Journal of Hydrometeorology 13:366–378.

    Article  Google Scholar 

  • Salathé, E. P. Jr. 2006. Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophysical Research Letters 33: L19820, doi:10.1029/2006GL026882.

    Article  Google Scholar 

  • Santer, B. D., K. E. Taylor, P. J. Gleckler, C. Bonfils, T. P. Barnett, D. W. Pierce, T. M. L. Wigley, et al. 2009. Incorporating model quality information in climate change detection and attribution studies. Proceedings of the National Academy of Sciences 106:14778–14783, doi:10.1073/pnas.0901736106.

    Article  CAS  Google Scholar 

  • Seager, R., M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H-P. Huang, et al. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184.

    Article  CAS  Google Scholar 

  • Seager, R., and G. A. Vecchi. 2010. Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proceedings of the National Academy of Sciences 107:21277–21282.

    Article  CAS  Google Scholar 

  • U.S. Bureau of Reclamation (Reclamation). 2011a. Literature synthesis on climate change implications for water and environmental resources, 2nd ed. Technical Memorandum 86-68210-2010-03. Denver: Reclamation, Research and Development Office. http://www.usbr.gov/research/docs/climatechangelitsynthesis.pdf.

    Google Scholar 

  • —. 2011b. West-wide climate risk assessments: Bias-corrected and spatially downscaled surface water projections. Technical Memorandum 86-68210-2011-01. Denver: Reclamation, Technical Service Center.

    Google Scholar 

  • Vano, J. A., T. Das, and D. P. Lettenmaier. 2012. Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. Journal of Hydrometeorology 13:932–949.

    Article  Google Scholar 

  • Wi, S., F. Dominguez, M. Durcik, J. Valdes, H. Diaz, and C. L. Castro. 2012. Climate change projections of snowfall in the Colorado River Basin using dynamical downscaling. Water Resources Research 48: W05504.

    Article  Google Scholar 

  • Wilby, R. L., S. P. Charles, E. Zorita, P. Whetton, and L. O. Mearns. 2004. Guidelines for use of climate scenarios developed from statistical downscaling methods. N.p.: IPCC Data Distribution Center. http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf.

    Google Scholar 

  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier. 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62:189–216.

    Article  Google Scholar 

  • Woodhouse, C.A., D. M. Meko, G. M. MacDonald, D. W. Stahle, and E. R. Cook. 2010. A 1,200-year perspective of 21st century drought in southwestern North America. Proceedings of the National Academy of Sciences 107:21283–21288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Endnotes

Endnotes

  1. i

    The BCSD method removes bias in the climate model output by mapping from the probability distribution of a current climate simulation to the probability distribution of observations on a monthly basis.

  2. ii

    For downscaling simulated surface temperature from the GCMs, the BCSD methodology preserves GCM (large-scale) trends by removing them initially and adding them back after the downscaling is implemented. For downscaling simulated precipitation, no explicit step is included in BCSD to preserve the GCM trends, because trends are not so obviously present. Other inherent weaknesses of the BCSD approach are the assumption of climate “stationarity” — the idea that statistical relationships developed in a historical period are applicable to a future period — and the underestimation of variability (Wilby et al. 2004; Milly et al. 2008).

  3. iii

    VIC is a macroscale, distributed, physically based hydrologic model that balances both surface energy and water over a grid mesh. For this report, VIC simulations, run from BCSD downscaled precipitation and temperature data, were employed.

  4. iv

    CMIP3 is phase 3 of the World Climate Research Programme’s Coupled Model Intercomparison Project.

  5. v

    With a baseline of 65 °F, heating degree days are the sum of the temperature differences of the daily mean temperature subtracted from 65 °F, for all days when the mean temperature is less than 65 °F. Cooling degree days are calculated similarly, but for when the mean temperature exceeds 65 °F.

  6. vi

    Cyclones are the rapid circulation of winds around a low pressure center, traveling counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. Anticyclones spiral out from a high pressure area and travel clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere.

  7. vii

    CNRM-C3 is the third version of a global ocean-atmosphere model originally developed at the Centre National de Recherches Meteorologiques, France.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Institute of the Environment

About this chapter

Cite this chapter

Cayan, D.R. et al. (2013). Future Climate: Projected Average. In: Garfin, G., Jardine, A., Merideth, R., Black, M., LeRoy, S. (eds) Assessment of Climate Change in the Southwest United States. NCA Regional Input Reports. Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-484-0_6

Download citation

Publish with us

Policies and ethics