Skip to main content

Impact of Anthropogenic Transformation of Seasonally Dry Tropical Forests on Ecosystem Biogeochemical Processes

  • Chapter

Abstract

Seasonally dry tropical forests (SDTFs) were recognized as the most endangered major tropical ecosystem in 1988 because of their high deforestation rates (Janzen 1988c). Maass (1995) analyzed the effect of conversion of SDTF to agriculture and pastures on ecosystem processes. He concluded that the main consequences of these conversions were (1) reduction in species diversity, (2) reduction in soil vegetative cover, (3) disruption of the water cycle, (4) changes in nutrient status, and (5) losses of nutrients from ecosystems through different pathways.

This is a preview of subscription content, log in via an institution.

References

  • Alvarez-Santiago, S.A. 2002. Efecto de la perturbación en la interacción micorrízica vesículo-arbuscular en un ecosistema tropical estacional. MS diss., Universidad Nacional Autónoma de México.

    Google Scholar 

  • Booth, M.S., J.M. Stark, and E. Rastetter. 2005. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecology 75: 139–57.

    Google Scholar 

  • Bruijnzeel, L.A. 1990. Hydrology of Moist Tropical Forest and Effects of Conversion: A State of Knowledge Review. Paris: UNESCO-IMP, Humid Tropics Program.

    Google Scholar 

  • Buschbacher, R., C. Uhl, and E. Serrao. 1988. Abandoned pastures in eastern Amazonia. 2. Nutrient stocks in soil and vegetation. Journal of Ecology 76: 682–99.

    Article  Google Scholar 

  • Castellanos, J., V.J. Jaramillo, R.L Sanford Jr., and J.B. Kauffman. 2001. Slash-and-burn effects on fine root biomass and productivity in a tropical dry forest ecosystems in México. Forest Ecology and Management 148: 41–51.

    Article  Google Scholar 

  • Cerri, C.C., B. Volkhoff, and F. Andreaux. 1991. Nature and behavior of organic matter in soil under natural forest, and after deforestation burning and cultivation, near Manaus. Forest Ecology and Management 38: 247–57.

    Article  Google Scholar 

  • Chen, J., and J.M. Stark. 2000. Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil. Soil Biology and Biogeochemistry 32: 47–57.

    Article  CAS  Google Scholar 

  • Dalal, R.C., and C. Mayer. 1987. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. 3. Distribution and kinetics of soil organic matter in particle-size and density fraction. Australian Journal of Soil Research 25: 83–93.

    Article  CAS  Google Scholar 

  • Davidson, E.A., C.J.R. de Carvalho, I.C.G. Vieira, R.D. Figueiredo, P. Moutinho, F.Y. Ishida, M.T.P. dos Santos, J.B. Guerrero, K. Kalif, and R.T. Saba. 2004. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications 14: 150–63.

    Article  Google Scholar 

  • Davidson, E.A., and W. Kingerlee. 1997. A global inventory of nitric oxide emissions from soils. Nutrient Cycling Agroecosystem 48: 37–50.

    Article  CAS  Google Scholar 

  • Dunn, P., L. DeBano, and G. Eberlein. 1979. Effects of burning on chaparral soils. 2. Soil microbes and nitrogen mineralization. Soil Science Society of America Journal 43: 509–14.

    Article  CAS  Google Scholar 

  • Ellingson, L.J., J.B. Kauffman, D.L. Cummings, R.L. Sanford Jr., and V.J. Jaramillo. 2000. Soil N dynamics associated with deforestation, biomass burning, and pasture conversion in a Mexican tropical dry forest. Forest Ecology and Management 137: 41–51.

    Article  Google Scholar 

  • Gallardo, J.F., and M.I. González. 2004. Sequestration of carbon in Spanish deciduous oak forest. Advances in GeoEcology 37: 341–51.

    Google Scholar 

  • Guo, L.B., and R.M. Gifford 2002. Soil carbon stocks and land use changes: A meta analysis. Global Change Biology 8: 345–60.

    Article  Google Scholar 

  • Hart, S., G.E. Nason, D. Myrolod, and D.A. Perry. 1994. Dynamics of gross nitrogen transformations in an old‐growth forest: The carbon connection. Ecology 75: 880–91.

    Article  Google Scholar 

  • Hassink, J. 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil 191: 77–87.

    Article  CAS  Google Scholar 

  • Houghton, R.A. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B: 370–90.

    Google Scholar 

  • Houghton, R.A., J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shaver, and G.M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soil between 1860 and 1980: A net release of CO2 to the atmosphere. Ecological Monographs 53: 235–62.

    Article  CAS  Google Scholar 

  • Hughes, R.F., J.B. Kauffman, and V.J. Jaramillo. 2000. Ecosystem-scale impacts of deforestation and land use in a humid tropical region of México. Ecological Applications 10: 515–27.

    Article  Google Scholar 

  • Jaramillo, V.J., J.B. Kauffman, L. Rentería-Rodríguez, D.L. Cummings, and L.J. Elling-son. 2003. Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems 6: 609–29.

    Article  CAS  Google Scholar 

  • Joergensen, R.G., and S. Scheu. 1999. Response of soil microorganisms to the addition of carbon. Soil Biology and Biochemistry 31: 859–66.

    Article  CAS  Google Scholar 

  • Kauffman, J.B., D.L. Cummings, and D.E. Ward. 1998. Fire in the Brazilian Amazons. 2. Biomass, nutrient pools, and losses in cattle pastures. Oecologia 113: 415–27.

    Article  Google Scholar 

  • Kauffman, J.B., R.L. Sanford Jr., D.L. Cummings, I.H. Salcedo, and E.V.S.B. Sampaio. 1993. Biomass and nutrient dynamics associated with slash fres in Neotropical dry forests. Ecology 74: 140–51.

    Article  Google Scholar 

  • Kauffman, J.B., M.D. Steele, D.L. Cummings, and V.J. Jaramillo. 2003. Biomass dynamics associated with deforestation, fre, and conversion to cattle pastures in a Mexican tropical dry forest. Forest Ecology and Management 176: 1–12.

    Article  Google Scholar 

  • Khanna, P.K., R.J. Raison, and R.A. Falkiner. 1994. Chemical properties of ash derived from Eucalyptus litter and its effects on forest soil. Forest Ecology and Management 66: 107–25.

    Article  Google Scholar 

  • Lardy, L.C., M. Brossard, M.L. Lopes, and J.Y. Laurent. 2002. Carbon and phosphorus stocks of clayed Ferralsols in Cerrado native and agroecosystems, Brazil. Agriculture, Ecosystems and Environment 92: 147–58.

    Article  Google Scholar 

  • Lessa, A.S.N., D.W. Anderson, and J.O. Moir. 1996. Fine root mineralization, soil organic matter and exchangeable cation dynamics in slash and burn agriculture in the semi-arid northeast of Brazil. Agriculture, Ecosystems and Environment 59: 191–202.

    Article  CAS  Google Scholar 

  • Maass, J.M. 1995. Conversion of tropical dry forest to pasture and agriculture. In Seasonally Dry Tropical Forests, ed. S.H. Bullock, H.A. Mooney, and E. Medina, 399– 422. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Montaño, N.M., F. García‐Oliva, and V.J. Jaramillo. 2007. Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant and Soil 295: 265–77.

    Article  Google Scholar 

  • Murty, D., M.U.F. Kirschbaum, R.E. McMurtrie, and H. McGilvray. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8: 105–23.

    Article  Google Scholar 

  • Neill, C., J.M. Melillo, P.A. Steudler, C.C. Cerri, J.F.L. Moraes, M.C. Piccolo, and M. Brito. 1997. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecological Applications 7: 1216–25.

    Article  Google Scholar 

  • Paul, E.A., and F.E. Clark. 1989. Soil Microbiology and Biochemistry. San Diego: Academic Press.

    Google Scholar 

  • Raison, R.J. 1979. Modifcation of the soil environment by vegetation fres, with particular reference to nitrogen transformations: A review. Plant and Soil 51: 73–108.

    Article  CAS  Google Scholar 

  • Ramakrishnan, P.S., and O.P. Toky. 1981. Soil nutrient status of hill agro-ecosystem and recovery pattern after slash-and-burn agriculture (Jhum) in north-eastern India. Plant and Soil 60: 41–64.

    Article  CAS  Google Scholar 

  • Ramankutty, N., H.K. Gibbs, F. Achard, R. DeFries, J.A. Foley, and R.A. Houghton. 2007. Challenges to estimating carbon emissions from tropical deforestation. Global Change Biology 13: 51–66.

    Article  Google Scholar 

  • Rusell, J.D., A.R. Fraser, J.R. Watson, and J.W. Parsons. 1974. Thermal decomposition of protein in soil organic matter. Geoderma 11: 63–66.

    Article  Google Scholar 

  • Salcedo, I.H., H. Tiessen, and E.V.S.B. Sampaio. 1997. Nutrient availability in soil samples from shifting cultivation sites in the semi-arid Caatinga of NE Brazil. Agriculture, Ecosystems and Environment 65: 177–86.

    Article  Google Scholar 

  • Schmidt, I.K., A. Michelsen, and S. Jonasson. 1997. Effects of labile soil carbon on nutrient partitioning between an arctic graminoid and microbes. Oecologia 112: 557–62.

    Article  Google Scholar 

  • Sheng, C., and H. Tiessen. 2000. Carbon turnover and carbon-13 natural abundance in organo-mineral fractions of a tropical dry forest soil under cultivation. Soil Science Society of America Journal 64: 2149–55.

    Article  Google Scholar 

  • Sibanda, H., and S. Young. 1989. The effect of humus acids and soil heating on the availability of phosphate in oxide-rich tropical soils. In Mineral Nutrients in Tropical Forest and Savanna Ecosystems, ed. J. Proctor, 71–83. Oxford: Blackwell Scientifc Publications.

    Google Scholar 

  • Singh, J.S., A.S. Raghubanshi, R.S. Singh, and S.C. Srivastava. 1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338: 499–500.

    Article  Google Scholar 

  • Singh, K.P. 1989. Mineral nutrients in tropical dry deciduous forest and savanna ecosystems in India. In Mineral Nutrients in Tropical Forest and Savanna Ecosystems, ed. J. Proctor, 153–68. Oxford: Blackwell Scientifc Publications.

    Google Scholar 

  • Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79: 7–31.

    Article  Google Scholar 

  • Six, J., R.T. Conant, E.A. Paul, and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: Implication for C-saturation of soils. Plant and Soil 241: 155–76.

    Article  CAS  Google Scholar 

  • Steele, M.D. 2000. Biomass and nutrient dynamics associated with deforestation, biomass burning, and conversion to pasture in a tropical dry forest in Mexico. MS diss., Oregon State University.

    Google Scholar 

  • Steininger, M.K. 2000. Secondary forest structure and biomass following short and extended land-use in central and southern Amazonia. Journal of Tropical Ecology 16: 689–708.

    Article  Google Scholar 

  • Tiessen, H., I.H. Salcedo, and E.V.S.B. Sampaio. 1992. Nutrient and soil organic matter dynamics under shifting cultivation in semi-arid northeastern Brazil. Agriculture, Ecosystems and Environment 38: 139–51.

    Article  CAS  Google Scholar 

  • Tiessen, H., and M.C.D. Santos. 1989. Variability of C, N and P contents of a tropical semiarid soil as affected by soil genesis, erosion and land clearing. Plant and Soil 119: 337–41.

    Article  CAS  Google Scholar 

  • Tiessen, H., and J.W.B. Stewart. 1983. Carbon and nitrogen in the light fraction of a forest soil: Vertical distribution and seasonal patterns. Soil Science 135: 79–87.

    Article  Google Scholar 

  • Trumbore, S., E.A. Davidson, P. Barbosa de Carmargo, D.E. Nepstad, and L.A. Marti-nelli. 1995. Belowground cycling of carbon in forest and pasture of Eastern Amazonia. Global Biogeochemistry Cycles 9: 515–28.

    Article  CAS  Google Scholar 

  • Varella, R.F., M.M.C. Bustamante, A.S. Pinto, K.W. Kisselle, R.V. Santos, R.A. Burke, R.G. Zepp, and L.T. Viana. 2004. Soil fluxes of CO2, CO, NO, and N2O from an old pasture and from native savanna in Brazil. Ecological Applications 14: S221– S231.

    Article  Google Scholar 

  • Walker, J., R.J. Raison, and P.K. Khanna. 1986. Fire. In Australian Soils: The Human Impact, ed. J. Russell and R. Isbell, 185–216. Brisbane: University of Queensland Press.

    Google Scholar 

  • Wick, B., H. Tiessen, and R.S.C. Menezes. 2000. Land quality changes following the conversion of the natural vegetation into silvo-pastoral systems in semi-arid NE Brazil. Plant and Soil 222: 59–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maribel Nava-Mendoza, Rodrigo Vel á zquez-Dur á n, Heberto Ferreira, and Alberto Valencia for their help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Rodolfo Dirzo Hillary S. Young Harold A. Mooney Gerardo Ceballos

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Island Press

About this chapter

Cite this chapter

García-Oliva, F., Jaramillo, V.J. (2011). Impact of Anthropogenic Transformation of Seasonally Dry Tropical Forests on Ecosystem Biogeochemical Processes. In: Dirzo, R., Young, H.S., Mooney, H.A., Ceballos, G. (eds) Seasonally Dry Tropical Forests. Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-021-7_10

Download citation

Publish with us

Policies and ethics

Societies and partnerships