Skip to main content

Abstract

The Suri/Huacaya phenotype inheritance in alpaca was tested on two independent Peruvian sources of records: the Registry of Mallkini farm (588 offspring by Suri sire × Suri dam from 62 paternal half sib families, and 2,126 offspring by Huacaya sire × Huacaya dam from 177 paternal half sib families) and the results of the Quimsachata INIA ILPA Puno experimental trial (two reciprocal experimental test-crosses, involving a total of 17 unrelated males and 149 unrelated females). The data support a genetic model in which two linked loci must simultaneously be homozygous for recessive alleles in order to produce the Huacaya phenotype. The estimated recombination rate between these loci was 0.099 (95% C.L. = 0.029-0.204). The birth of 3 Suri offspring from Huacaya × Huacaya mating is explained by a new dominant mutation on some germinal lines of Huacaya animals. The direct mutation rate can be estimated at 0.0014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.95
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andresen E., 1974. The effect of ascertainment by truncate selection on segregation ratios. Proceedings 1st World Congress Genetic Applied Livestock Production, Madrid, Spain, pp. 111–114.

    Google Scholar 

  • Baychelier P., 2000. Suri and Huacaya: Two Alleles or Two Genes? Proc. Australian Alpaca Ass. Nat. Conf., Canberra, Australia, pp 79–85.

    Google Scholar 

  • Bryson W.G., D.P. Harland, J.P. Caldwell, J.A. Vernon, R.J. Walls, J.L. Woods, S. Nagase, T. Itou and K. Koike, 2009. Cortical cell types and intermediate filament arrangements correlate with fiber curvature in Japanese human hair. Journal of Structural Biology, 166: 46–58.

    Article  PubMed  Google Scholar 

  • Cadieu E, M.W. Neff, P. Quignon, K. Walsh, K. Chase, H.G. Parker, B.M.VonHoldt, A. Rhue, A. Boyko, A. Byers, A. Wong, D.S. Mosher, A.G. Elkahloun, T.C. Spady, C. Andre, K.G. Lark, M. Cargill, C.D. Bustamante, R.K. Wayne and E.A. Ostrander, 2009. Coat variation in the domestic dog is governed by variants in three genes. Science, 326: 150–153.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael I. and G.J. Judson, 1997. Phenotypes resulting from Huacaya by Huacaya, Suri by Huacaya and Suri by Sury Alpaca crossings. Proceedings of the International Alpaca Industry Seminar, Sydney, Australia, pp. 11–13.

    Google Scholar 

  • Drogemuller C., S. Rufenacht, B. Wichert and T. Leeb, 2007. Mutations within the FGF5 gene are associated with hair length in cats. Animal Genetics, 38: 218–221. Dunn L.C., 1937. Caracul, a dominant mutation. Journal of Heredity, 28: 334–334.

    Google Scholar 

  • Housley D.J. and P.J. Venta, 2006. The long and the short of it: evidence that FGF5 is a major determinant of canine ‘hair’-itability. Animal Genetics, 37: 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Hynd P.I., N.M. Edwards, M. Hebart, M. McDowall and S. Clark, 2009. Wool fibre crimp is determined by mitotic asymmetry and position of final keratinisation and not ortho- and para-cortical cell segmentation. Animal, 3: 838–843.

    Article  PubMed  CAS  Google Scholar 

  • Kehler J.S., V.A. David, A.A. Schaffer, K. Bajema, E. Eizirik, D.K. Ryugo, S.S. Hannah, S.J. O’Brien and M. Menotti- Raymond, 2007. Four independent mutations in the feline fibroblast growth factor 5 gene determine the long-haired phenotype in domestic cats. Journal of Heredity, 98: 555–566.

    Article  PubMed  CAS  Google Scholar 

  • Komi-Kuramochi A., M. Kawano, Y. Oda, M. Asada, M. Suzuki, J. Oki, T. Imamura, 2005. Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. Journal of Endocrinology, 186: 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Li S.W., H.S. Ouyang, G.E. Rogers and C.S. Bawden, 2009. Characterization of the structural and molecular defects in fibres and follicles of the Merino felting lustre mutant. Experimental Dermatology, 18: 134–142.

    Article  PubMed  CAS  Google Scholar 

  • Mulsant P., H. Rochambeau and R.G. Thébault, 2004. A note on the linkage between the angora and FGF5 genes in rabbits. World Rabbit Science, 12: 1–6.

    Google Scholar 

  • Nagorcka B.N. and D.L. Adelson, 1992. The reaction–diffusion system as a determinant of wool fibre diameter, follicle density and fibre diameter distribution. Wool technology and sheep breeding, XL: 47–51.

    Google Scholar 

  • Nakatake Y., M. Hoshikawa, T. Asaki, Y. Kassai and N. Itoh, 2001. Identification of a novel fibroblast growth factor, FGF-22, preferentially expressed in the inner root sheath of the hair follicle. Biochimica et Biophysica Acta, 1517: 460–463.

    Article  PubMed  CAS  Google Scholar 

  • Ponzoni R.W., D.J. Hubbard, R.V. Kenyon, C.D. Tuckwell, B.A. McGregor, A. Howse, I. Carmichael and G.J. Judson, 1998. Phenotypes resulting from Huacaya by Huacaya, Suri by Huacaya and Suri by Suri alpaca crossings. Tech. Rep. for Australian Alpaca Assoc. 4 pp.

    Google Scholar 

  • Presciuttini S., A. Valbonesi, N. Apaza, M. Antonini, T. Huanca and C. Renieri, 2010. Fleece variation in alpaca (Vicugna pacos): a two-locus model for the Suri/Huacaya phenotype. BMC Genetics, 11: 70.

    Article  PubMed  Google Scholar 

  • Renieri C., A. Valbonesi, V. La Manna, M. Antonini and M. Asparrin, 2009. Inheritance of Suri and Huacaya type of fleece in alpaca. Italian J. Animal Science, 8: 83–91.

    Google Scholar 

  • Runkel F., M. Klaften, K. Koch, V. Bohnert, H. Bussow, H. Fuchs, T. Franz and M. Hrabe de Angelis, 2006. Morphologic and molecular characterization of two novel Krt71 (Krt2-6 g) mutations: Krt71rco12 and Krt71rco13. Mammalian Genome, 17: 1172–1182.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J. and D.W. Russell, 2001. Molecular cloning: a laboratory manual, 3 rd ed. Cold Spring Harbor Laboratory Press, New York, NY, USA, 999 pp.

    Google Scholar 

  • Shimomura Y., M. Wajid, L. Petukhova, M. Kurban and A.M. Christiano, 2010. Autosomal-dominant woolly hair resulting from disruption of keratin 74 (KRT74), a potential determinant of human hair texture. American Journal of Human Genetics, 86: 632–638.

    Article  PubMed  CAS  Google Scholar 

  • Sponenberg P., 2010. Suri and huacaya alpaca breeding results in North America. Small Ruminant Research, 93: 210–212.

    Article  Google Scholar 

  • Suzuki S., Ota Y., K. Ozawa and T. Imamura, 2000. Dual-mode regulation of hair growth cycle by two Fgf-5 gene products. Journal of Investigative Dermatology, 114: 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Thibaut S. and B.A. Bernard, 2005. The biology of hair shape. International Journal of Dermatology, 44 Suppl 1: 2–3.

    Article  PubMed  Google Scholar 

  • Umemori H., M.W. Linhoff, D.M. Ornitz and J.R. Sanes, 2004. FGF22 and Its Close Relatives Are Presynaptic Organizing Molecules in the Mammalian Brain. Cell, 118: 257–270.

    Article  PubMed  CAS  Google Scholar 

  • Van Steensel M.A., M. van Geel and P.M. Steiljen, 2001. The molecular basis of hair growth. European Journal of Dermatology, 11: 348–352.

    PubMed  Google Scholar 

  • Velasco J., 1980. Mejoramiento Genetico de Alpacas. Anales III Reunion Cientifica Animal. Soc. Peruana de Prod. Anim., Lima, Peru.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Renieri .

Editor information

Ma Ángeles Pérez-Cabal Juan Pablo Gutiérrez Isabel Cervantes Ma Jesús Alcalde

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Wageningen Academic Publishers

About this chapter

Cite this chapter

Renieri, C. et al. (2011). Suri/Huacaya phenotype inheritance in alpaca (Vicugna pacos) . In: Pérez-Cabal, M.Á., Gutiérrez, J.P., Cervantes, I., Alcalde, M.J. (eds) Fibre production in South American camelids and other fibre animals. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-727-1_2

Download citation

Publish with us

Policies and ethics