Skip to main content

DNA Vaccines for Cancer Immunotherapy

  • Chapter
  • 1178 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The introduction of selected genes by direct injection of DNA represents a general strategy for short-term gene expression in vivo. DNA vaccines may be especially useful for cancer immunotherapy because DNA allows transient expression of tumor-associated antigens and immunostimulatory proteins by a relatively nonimmunogenic vector. This chapter focuses on how DNA vaccines stimulate immune responses and how different immunization strategies may result in various types of immunity. The inclusion of chemical and genetic adjuvants as methods for enhancing DNA vaccination is also discussed. The methods currently available for constructing DNA vaccines and the implications for cancer therapy will be reviewed. Finally, some of the safety and ethical concerns generated by DNA vaccination are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dupuis M, Denis-Mize K, Woo C, et al. McDonald DM. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000; 165:2850–2858.

    PubMed  CAS  Google Scholar 

  2. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247:1465–1468.

    Article  PubMed  CAS  Google Scholar 

  3. Corr M, Lee DJ, Carson DA, Tighe H. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 1996; 184:1555–1560.

    Article  PubMed  CAS  Google Scholar 

  4. Iwasaki A, Torres CA, Ohashi PS, Robinson HL, Barber BH. The dominant role of bone marrowderived cells in CTL induction following plasmid DNA immunization at different sites. J Immunol 1997; 159:11–14.

    PubMed  CAS  Google Scholar 

  5. Doe B, Selby M, Barnett S, Baenziger J, Walker CM. Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc Natl Acad Sci USA 1996; 93:8578–8583.

    Article  PubMed  CAS  Google Scholar 

  6. Tuting T, Wilson CC, Martin DM, et al. Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. J Immunol 1998;160:1139–1147.

    PubMed  CAS  Google Scholar 

  7. Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259:1745–1749.

    Article  PubMed  CAS  Google Scholar 

  8. Agadjanyan MG, Kim JJ, Trivedi N, et al. CD86 (B7-2) can function to drive MHC-restricted antigenspecific CTL responses in vivo. J Immunol 1999; 162:3417–3427.

    PubMed  CAS  Google Scholar 

  9. Iwasaki A, Stiernholm BJ, Chan AK, Berinstein NL, Barber BH. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 1997; 158:4591–45601.

    PubMed  CAS  Google Scholar 

  10. Torres CA, Iwasaki A, Barber BH, Robinson HL. Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J Immunol 1997; 158:4529–4532.

    PubMed  CAS  Google Scholar 

  11. Yang NS, Burkholder J, Roberts B, et al. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 1990; 87:9568–9572.

    Article  PubMed  CAS  Google Scholar 

  12. Raz E, Carson DA, Parker SE, et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci USA 1994; 91:9519–9523.

    Article  PubMed  CAS  Google Scholar 

  13. Klinman DM, Sechler JM, Conover J, Gu M, Rosenberg AS. Contribution of cells at the site of DNA vaccination to the generation of antigen-specific immunity and memory. J Immunol 1998; 160:2388–2392.

    PubMed  CAS  Google Scholar 

  14. Moron G, Dadaglio G, Leclerc C. New tools for antigen delivery to the MHC class I pathway. Trends Immunol 2004; 25:92–97.

    Article  PubMed  CAS  Google Scholar 

  15. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245–252.

    Article  PubMed  CAS  Google Scholar 

  16. Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001; 293:253–256.

    Article  PubMed  CAS  Google Scholar 

  17. Lanzavecchia A, Sallusto F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 2000; 290:92–97.

    Article  PubMed  CAS  Google Scholar 

  18. Hwang LY, Lieu PT, Peterson PA, Yang Y. Functional regulation of immunoproteasomes and transporter associated with antigen processing. Immunol Res 2001; 24:245–272.

    Article  PubMed  CAS  Google Scholar 

  19. Van den Eynde BJ, Morel S. Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 2001; 13:147–153.

    Article  PubMed  Google Scholar 

  20. Ramshaw IA, Ramsay AJ. The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today 2000; 21:163–165.

    Article  PubMed  CAS  Google Scholar 

  21. Zimmermann S, Egeter O, Hausmann S, Lipford GB, Rocken M, Wagner H, Heeg K. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol 1998; 160:3627–3630.

    PubMed  CAS  Google Scholar 

  22. Ma X, Trinchieri G. Regulation of interleukin-12 production in antigen-presenting cells. Adv Immunol 2001; 79:55–92.

    PubMed  CAS  Google Scholar 

  23. Roman M, Martin-Orozco E, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997; 3:849–854.

    Article  PubMed  CAS  Google Scholar 

  24. Cho HJ, Hayashi T, Datta SK, et al. IFN-alpha beta promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J Immunol 2002; 168:4907–4913.

    PubMed  CAS  Google Scholar 

  25. Heath WR, Carbone FR. Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 2001; 1:126–134.

    Article  PubMed  CAS  Google Scholar 

  26. Stoll S, Jonuleit H, Schmitt E, et al. Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur J Immunol 1998; 28:3231–3239.

    Article  PubMed  CAS  Google Scholar 

  27. Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13:715–725.

    Article  PubMed  CAS  Google Scholar 

  28. Weiss R, Scheiblhofer S. Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 2002; 3277:1–7.

    Google Scholar 

  29. Martins LP, Lau LL, Asano MS, Ahmed R. DNA vaccination against persistent viral infection. J Virol 1995; 69:2574–2582.

    PubMed  CAS  Google Scholar 

  30. Yokoyama M, Zhang J, Whitton JL. DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection. J Virol 1995; 69:2684–2688.

    PubMed  CAS  Google Scholar 

  31. Zarozinski CC, Fynan EF, Selin LK, Robinson HL, Welsh RM. Protective CTL-dependent immunity and enhanced immunopathology in mice immunized by particle bombardment with DNA encoding an internal virion protein. J Immunol 1995; 154:4010–4017.

    PubMed  CAS  Google Scholar 

  32. Chen Y, Webster RG, Woodland DL. Induction of CD8+ T cell responses to dominant and subdominant epitopes and protective immunity to Sendai virus infection by DNA vaccination. J Immunol 1998; 160:2425–2432.

    PubMed  CAS  Google Scholar 

  33. Fu TM, Friedman A, Ulmer JB, Liu MA, Donnelly JJ. Protective cellular immunity: cytotoxic T-lymphocyte responses against dominant and recessive epitopes of influenza virus nucleoprotein induced by DNA immunization. J Virol 1997; 71:2715–2721.

    PubMed  CAS  Google Scholar 

  34. Calarota SA, Weiner DB. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol Rev 2004; 199:84–99.

    Article  PubMed  CAS  Google Scholar 

  35. Hermanson G, Whitlow V, Parker S, et al. A cationic lipid-formulated plasmid DNA vaccine confers sustained antibody-mediated protection against aerosolized anthrax spores. Proc Natl Acad Sci USA 2004; 101:13,601–13,606.

    Article  PubMed  CAS  Google Scholar 

  36. Deck RR, DeWitt CM, Donnelly JJ, Liu MA, Ulmer JB. Characterization of humoral immune responses induced by an influenza hemagglutinin DNA vaccine. Vaccine 1997; 15:71–78.

    Article  PubMed  CAS  Google Scholar 

  37. Robinson HL, Boyle CA, Feltquate DM, Morin MJ, Santoro JC, Webster RG. DNA immunization for influenza virus: studies using hemagglutinin-and nucleoprotein-expressing DNAs. J Infect Dis 1997; 176(Suppl 1):S50–S55.

    PubMed  CAS  Google Scholar 

  38. Hovav AH, Mullerad J, Davidovitch L, et al. The Mycobacterium tuberculosis recombinant 27-kilodalton lipoprotein induces a strong Th1-type immune response deleterious to protection. Infect Immun 2003; 71:3146–3154.

    Article  PubMed  CAS  Google Scholar 

  39. Boyle JS, Koniaras C, Lew AM. Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization. Int Immunol 1997; 9:1897–1906.

    Article  PubMed  CAS  Google Scholar 

  40. Feltquate DM, Heaney S, Webster RG, Robinson HL. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 1997; 158:2278–2284.

    PubMed  CAS  Google Scholar 

  41. Lefrancois L, Masopust D. T cell immunity in lymphoid and non-lymphoid tissues. Curr Opin Immunol 2002; 14:503–508.

    Article  PubMed  CAS  Google Scholar 

  42. Zinkernagel RM. On differences between immunity and immunological memory. Curr Opin Immunol 2002; 14:523–536.

    Article  PubMed  CAS  Google Scholar 

  43. Zinkernagel RM, Hengartner H. Regulation of the immune response by antigen. Science 2001; 293:251–253.

    Article  PubMed  CAS  Google Scholar 

  44. Sasaki S, Takeshita F, Xin KQ, Ishii N, Okuda K. Adjuvant formulations and delivery systems for DNA vaccines. Methods 2003; 31:243–254.

    Article  PubMed  CAS  Google Scholar 

  45. Johnston SA, Tang DC. Gene gun transfection of animal cells and genetic immunization. Methods Cell Biol 1994; 43:353–365.

    PubMed  CAS  Google Scholar 

  46. Furth PA, Kerr D, Wall R. Gene transfer by jet injection into differentiated tissues of living animals and in organ culture. Mol Biotechnol 1995; 4:121–127.

    PubMed  CAS  Google Scholar 

  47. Ren S, Li M, Smith JM, DeTolla LJ, Furth PA. Low-volume jet injection for intradermal immunization in rabbits. BMC Biotechnol 2002; 2:10.

    Article  PubMed  Google Scholar 

  48. Cui Z, Baizer L, Mumper RJ. Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device. J Biotechnol 2003; 102:105–115.

    Article  PubMed  CAS  Google Scholar 

  49. Epstein JE, Gorak EJ, Charoenvit Y, et al. Safety, tolerability, and lack of antibody responses after administration of a PfCSP DNA malaria vaccine via needle or needle-free jet injection, and comparison of intramuscular and combination intramuscular/intradermal routes. Hum Gene Ther 2002; 13:1551–1560.

    Article  PubMed  CAS  Google Scholar 

  50. Aguiar JC, Hedstrom RC, Rogers WO, et al. Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 2001; 20:275–280.

    Article  PubMed  CAS  Google Scholar 

  51. Anwer K, Earle KA, Shi M, et al. Synergistic effect of formulated plasmid and needle-free injection for genetic vaccines. Pharm Res 1999; 16:889–895.

    Article  PubMed  CAS  Google Scholar 

  52. Wang R, Epstein J, Baraceros FM, et al. Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci USA 2001; 98:10,817–10,822.

    Article  PubMed  CAS  Google Scholar 

  53. Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 1988; 9:356–362.

    Article  PubMed  CAS  Google Scholar 

  54. Singh M, Briones M, Ott G, O’Hagan D. Cationic microparticles: a potent delivery system for DNA vaccines. Proc Natl Acad Sci USA 2000; 97:811–816.

    Article  PubMed  CAS  Google Scholar 

  55. Denis-Mize KS, Dupuis M, MacKichan ML, et al. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther 2000; 7:2105–2112.

    Article  PubMed  CAS  Google Scholar 

  56. Falo LD Jr, Kovacsovics-Bankowski M, Thompson K, Rock KL. Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nat Med 1995; 1:649–653.

    Article  PubMed  CAS  Google Scholar 

  57. O’Hagan DT. Recent advances in vaccine adjuvants for systemic and mucosal administration. J Pharm Pharmacol 1998; 50:1–10.

    PubMed  CAS  Google Scholar 

  58. Cui Z, Mumper RJ. Genetic immunization using nanoparticles engineered from microemulsion precursors. Pharm Res 2002; 19:939–946.

    Article  PubMed  CAS  Google Scholar 

  59. Cui Z, Mumper RJ. Topical immunization using nanoengineered genetic vaccines. J Control Release 2002; 81:173–184.

    Article  PubMed  CAS  Google Scholar 

  60. Cui Z, Mumper RJ. Intranasal administration of plasmid DNA-coated nanoparticles results in enhanced immune responses. J Pharm Pharmacol 2002; 54:1195–1203.

    Article  PubMed  CAS  Google Scholar 

  61. Mumper RJ, Cui Z. Genetic immunization by jet injection of targeted pDNA-coated nanoparticles. Methods 2003; 31:255–262.

    Article  PubMed  CAS  Google Scholar 

  62. Cui Z, Mumper RJ. The effect of co-administration of adjuvants with a nanoparticle-based genetic vaccine delivery system on the resulting immune responses. Eur J Pharm Biopharm 2003; 55:11–18.

    Article  PubMed  CAS  Google Scholar 

  63. Midoux P, Mendes C, Legrand A, et al. Specific gene transfer mediated by lactosylated poly-l-lysine into hepatoma cells. Nucleic Acids Res 1993; 21:871–878.

    Article  PubMed  CAS  Google Scholar 

  64. Fajac I, Briand P, Monsigny M, Midoux P. Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells. Hum Gene Ther 1999; 10:395–406.

    Article  PubMed  CAS  Google Scholar 

  65. Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002; 105:1233–1239.

    Article  PubMed  CAS  Google Scholar 

  66. Scherer F, Anton M, Schillinger U, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002; 9:102–109.

    Article  PubMed  CAS  Google Scholar 

  67. Wong TK, Neumann E. Electric field mediated gene transfer. Biochem Biophys Res Commun 1982; 107:584–587.

    Article  PubMed  CAS  Google Scholar 

  68. Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1991; 1088:131–134.

    PubMed  CAS  Google Scholar 

  69. Rizzuto G, Cappelletti M, Maione D, et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 1999; 96:6417–6422.

    Article  PubMed  CAS  Google Scholar 

  70. Brown MD, Schatzlein AG, Uchegbu IF. Gene delivery with synthetic (non viral) carriers. Int J Pharm 2001; 229:1–21.

    Article  PubMed  CAS  Google Scholar 

  71. Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 1993; 90:11478–11,482.

    Article  PubMed  CAS  Google Scholar 

  72. Jones DH, Corris S, McDonald S, Clegg JC, Farrar GH. Poly(dl-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 1997; 15:814–817.

    Article  PubMed  CAS  Google Scholar 

  73. Chen SC, Jones DH, Fynan EF, et al. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J Virol 1998; 72:5757–5761.

    PubMed  CAS  Google Scholar 

  74. Herrmann JE, Chen SC, Jones DH, et al. Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles. Virology 1999; 259:148–153.

    Article  PubMed  CAS  Google Scholar 

  75. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan—DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 1999; 5:387–391.

    Article  PubMed  CAS  Google Scholar 

  76. Klavinskis LS, Gao L, Barnfield C, Lehner T, Parker S. Mucosal immunization with DNA-liposome complexes. Vaccine 1997; 15:818–820.

    Article  PubMed  CAS  Google Scholar 

  77. Ban EM, van Ginkel FW, Simecka JW, Kiyono H, Robinson HL, McGhee JR. Mucosal immunization with DNA encoding influenza hemagglutinin. Vaccine 1997; 15:811–813.

    Article  PubMed  CAS  Google Scholar 

  78. Kuklin N, Daheshia M, Karem K, Manickan E, Rouse BT. Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J Virol 1997; 71:3138–3145.

    PubMed  CAS  Google Scholar 

  79. Sasaki S, Hamajima K, Fukushima J, et al. Comparison of intranasal and intramuscular immunization against human immunodeficiency virus type 1 with a DNA-monophosphoryl lipid A adjuvant vaccine. Infect Immun 1998; 66:823–826.

    PubMed  CAS  Google Scholar 

  80. McShane H. Prime-boost immunization strategies for infectious diseases. Curr Opin Mol Ther 2002; 4:23–27.

    PubMed  CAS  Google Scholar 

  81. Estcourt MJ, Ramsay AJ, Brooks A, Thomson SA, Medveckzy CJ, Ramshaw IA. Prime-boost immunization generates a high-frequency, high-avidity CD8(+) cytotoxic T lymphocyte population. Int Immunol 2002; 14:31–37.

    Article  PubMed  CAS  Google Scholar 

  82. Ramshaw IA, Ramsay AJ. The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today 2000; 21:163–165.

    Article  PubMed  CAS  Google Scholar 

  83. Takeda A, Igarashi H, Nakamura H, et al. Protective efficacy of an AIDS vaccine, a single DNA priming followed by a single booster with a recombinant replication-defective Sendai virus vector, in a macaque AIDS model. J Virol 2003; 77:9710–9715.

    Article  PubMed  CAS  Google Scholar 

  84. Nakaya Y, Zheng H, Garcia-Sastre A. Enhanced cellular immune responses to SIV Gag by immunization with influenza and vaccinia virus recombinants. Vaccine 2003; 21:2097–2106.

    Article  PubMed  CAS  Google Scholar 

  85. Gherardi MM, Najera JL, Perez-Jimenez E, Guerra S, Garcia-Sastre A, Esteban M. Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J Virol 2003; 77:7048–7057.

    Article  PubMed  CAS  Google Scholar 

  86. Eo SK, Gierynska M, Kamar AA, Rouse BT. Prime-boost immunization with DNA vaccine: mucosal route of administration changes the rules. J Immunol 2001; 166:5473–5479.

    PubMed  CAS  Google Scholar 

  87. Doria-Rose NA, Ohlen C, Polacino P, et al. Multigene DNA priming-boosting vaccines protect macaques from acute CD4+-T-cell depletion after simian-human immunodeficiency virus SHIV89.6P mucosal challenge. J Virol 2003; 77:11,563–11,577.

    Article  PubMed  CAS  Google Scholar 

  88. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20:709–760.

    Article  PubMed  CAS  Google Scholar 

  89. Ulmer JB, DeWitt CM, Chastain M, et al. Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine 1999; 18:18–28.

    Article  PubMed  CAS  Google Scholar 

  90. Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol 2004; 82:497–505.

    Article  PubMed  CAS  Google Scholar 

  91. Kuklin N, Daheshia M, Karem K, Manickan E, Rouse BT. Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J Virol 1997; 71:3138–3145.

    PubMed  CAS  Google Scholar 

  92. Sasaki S, Hamajima K, Fukushima J, et al. Comparison of intranasal and intramuscular immunization against human immunodeficiency virus type 1 with a DNA-monophosphoryl lipid A adjuvant vaccine. Infect Immun 1998; 66:823–826.

    PubMed  CAS  Google Scholar 

  93. Denis-Mize KS, Dupuis M, Singh M, et al. Mechanisms of increased immunogenicity for DNA-based vaccines adsorbed onto cationic microparticles. Cell Immunol 2003; 225:12–20.

    Article  PubMed  CAS  Google Scholar 

  94. Toda S, Ishii N, Okada E, et al. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-gamma antibody. Immunology 1997; 92:111–117.

    Article  PubMed  CAS  Google Scholar 

  95. Sasaki S, Sumino K, Hamajima K, et al. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J Virol 1998; 72:4931–4939.

    PubMed  CAS  Google Scholar 

  96. Sasaki S, Fukushima J, Hamajima K, et al. Adjuvant effect of Ubenimex on a DNA vaccine for HIV-1. Clin Exp Immunol 1998; 111:30–35.

    Article  PubMed  CAS  Google Scholar 

  97. Sasaki S, Amara RR, Oran AE, Smith JM, Robinson HL. Apoptosis-mediated enhancement of DNAraised immune responses by mutant caspases. Nat Biotechnol 2001; 19:543–547.

    Article  PubMed  CAS  Google Scholar 

  98. Barouch DH, Santra S, Tenner-Racz K, et al. Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol 2002; 168:562–568.

    PubMed  CAS  Google Scholar 

  99. Kim JJ, Yang JS, Lee DJ, et al. Macrophage colony-stimulating factor can modulate immune responses and attract dendritic cells in vivo. Hum Gene Ther 2000; 11:305–321.

    Article  PubMed  CAS  Google Scholar 

  100. Chow YH, Chiang BL, Lee YL, et al. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol 1998; 160:1320–1329.

    PubMed  CAS  Google Scholar 

  101. Garren H, Ruiz PJ, Watkins TA, et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 2001; 15:15–22.

    Article  PubMed  CAS  Google Scholar 

  102. Prayaga SK, Ford MJ, Haynes JR. Manipulation of HIV-1 gp120-specific immune responses elicited via gene gun-based DNA immunization. Vaccine 1997; 15:1349–1352.

    Article  PubMed  CAS  Google Scholar 

  103. Hengge UR, Chan EF, Foster RA, Walker PS, Vogel JC. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat Genet 1995; 10:161–166.

    Article  PubMed  CAS  Google Scholar 

  104. Daheshia M, Kuklin N, Kanangat S, Manickan E, Rouse BT. Suppression of ongoing ocular inflammatory disease by topical administration of plasmid DNA encoding IL-10. J Immunol 1997; 159:1945–1952.

    PubMed  CAS  Google Scholar 

  105. Tsuji T, Hamajima K, Fukushima J, et al. Enhancement of cell-mediated immunity against HIV-1 induced by coinnoculation of plasmid-encoded HIV-1 antigen with plasmid expressing IL-12. J Immunol 1997; 158:4008–4013.

    PubMed  CAS  Google Scholar 

  106. Xin KQ, Hamajima K, Sasaki S, et al. IL-15 expression plasmid enhances cell-mediated immunity induced by an HIV-1 DNA vaccine. Vaccine 1999; 18:858–866.

    Article  Google Scholar 

  107. Billaut-Mulot O, Idziorek T, Loyens M, Capron A, Bahr GM. Modulation of cellular and humoral immune responses to a multiepitopic HIV-1 DNA vaccine by interleukin-18 DNA immunization/viral protein boost. Vaccine 2001; 19:2803–2811.

    Article  PubMed  CAS  Google Scholar 

  108. Okada E, Sasaki S, Ishii N, et al. Intranasal immunization of a DNA vaccine with IL-12-and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. J Immunol 1997; 159:3638–3647.

    PubMed  CAS  Google Scholar 

  109. Kusakabe K, Xin KQ, Katoh H, et al. The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an HIV-1-specific DNA vaccine. The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an HIV-1-specific DNA vaccine. J Immunol 2000; 164:3102–3111.

    PubMed  CAS  Google Scholar 

  110. Liu LJ, Watabe S, Yang J, et al. Topical application of HIV DNA vaccine with cytokine-expression plasmids induces strong antigen-specific immune responses. Vaccine 2001; 20:42–48.

    Article  PubMed  Google Scholar 

  111. Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999; 189:169–178.

    Article  PubMed  CAS  Google Scholar 

  112. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2:1122–1128.

    Article  PubMed  CAS  Google Scholar 

  113. Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 1999; 11:753–761.

    Article  PubMed  CAS  Google Scholar 

  114. Eo SK, Kumaraguru U, Rouse BT. Plasmid DNA encoding CCR7 ligands compensate for dysfunctional CD8+ T cell responses by effects on dendritic cells. J Immunol 2001; 167:3592–3599.

    PubMed  CAS  Google Scholar 

  115. Lu Y, Xin KQ, Hamajima K, et al. Macrophage inflammatory protein-1alpha (MIP-1alpha) expression plasmid enhances DNA vaccine-induced immune response against HIV-1. Clin Exp Immunol 1999; 115:335–341.

    Article  PubMed  CAS  Google Scholar 

  116. Boyer JD, Kim J, Ugen K, et al. HIV-1 DNA vaccines and chemokines. Vaccine 1999; 17(Suppl 2):S53–S64.

    Article  PubMed  CAS  Google Scholar 

  117. Lanzavecchia A, Sallusto F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr Opin Immunol 2000; 12:92–98.

    Article  PubMed  CAS  Google Scholar 

  118. Eo SK, Lee S, Kumaraguru U, Rouse BT. Immunopotentiation of DNA vaccine against herpes simplex virus via co-delivery of plasmid DNA expressing CCR7 ligands. Vaccine 2001; 19:4685–4693.

    Article  PubMed  CAS  Google Scholar 

  119. Kim JJ, Bagarazzi ML, Trivedi N, et al. Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat Biotechnol 1997; 15:641–646.

    Article  PubMed  CAS  Google Scholar 

  120. Kim JJ, Nottingham LK, Wilson DM, et al. Engineering DNA vaccines via co-delivery of co-stimulatory molecule genes. Vaccine 1998; 16:1828–1835.

    Article  PubMed  CAS  Google Scholar 

  121. Kim JJ, Tsai A, Nottingham LK, et al. Intracellular adhesion molecule-1 modulates beta-chemokines and directly costimulates T cells in vivo. J Clin Invest 1999; 103:869–877.

    PubMed  CAS  Google Scholar 

  122. Smith DF, Whitesell L, Katsanis E. Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol Rev 1998; 50:493–514.

    PubMed  CAS  Google Scholar 

  123. Melnick J, Argon Y. Molecular chaperones and the biosynthesis of antigen receptors. Immunol Today 1995; 16:243–250.

    Article  PubMed  CAS  Google Scholar 

  124. Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 1998; 8:657–665.

    Article  PubMed  CAS  Google Scholar 

  125. Chen CH, Wang TL, Hung CF, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 2000; 60:1035–1042.

    PubMed  CAS  Google Scholar 

  126. Kammerer R, Stober D, Riedl P, Oehninger C, Schirmbeck R, Reimann J. Noncovalent association with stress protein facilitates cross-priming of CD8+T cells to tumor cell antigens by dendritic cells. J Immunol 2002; 168:108–117.

    PubMed  CAS  Google Scholar 

  127. Noessner E, Gastpar R, Milani V, et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 2002; 169:5424–5432.

    PubMed  CAS  Google Scholar 

  128. Singh-Jasuja H, Hilf N, Arnold-Schild D, Schild H. The role of heat shock proteins and their receptors in the activation of the immune system. Biol Chem 2001; 382:629–636.

    Article  PubMed  CAS  Google Scholar 

  129. Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacilli Calmette-GUA(C)rin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol 2000; 121:216–225.

    Article  PubMed  CAS  Google Scholar 

  130. Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 2001; 167:4844–4852.

    PubMed  CAS  Google Scholar 

  131. Kuppner MC, Gastpar R, Gelwer S, et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 2001; 31:1602–1609.

    Article  PubMed  CAS  Google Scholar 

  132. Pavlenko M, Roos AK, Leder C, et al. Comparison of PSA-specific CD8(+) CTL responses and antitumor immunity generated by plasmid DNA vaccines encoding PSA-HSP chimeric proteins. Cancer Immunol Immunother 2004; 53:1085–1092.

    Article  PubMed  CAS  Google Scholar 

  133. Srivastava PK. Immunotherapy of human cancer: lessons from mice. Nat Immunol 2000; 1:363–66.

    Article  PubMed  CAS  Google Scholar 

  134. Srivastava PK, Amato RJ. Heat shock proteins: the “Swiss Army Knife” vaccines against cancers and infectious agents. Vaccine 2001; 19:2590–2597.

    Article  PubMed  CAS  Google Scholar 

  135. Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 2000; 88:232–238.

    Article  PubMed  CAS  Google Scholar 

  136. Kozak M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci USA 1995; 92:2662–2666.

    Article  PubMed  CAS  Google Scholar 

  137. Sasaki S, Takeshita F, Oikawa T, et al. Improvement of DNA vaccine immunogenicity by a dual antigen expression system. Biochem Biophys Res Commun 2004; 315:38–43.

    Article  PubMed  CAS  Google Scholar 

  138. Nelson JA, Gnann JW Jr, Ghazal P. Regulation and tissue-specific expression of human cytomegalovirus. Curr Top Microbiol Immunol 1990; 154:75–100.

    PubMed  CAS  Google Scholar 

  139. Prosch S, Staak K, Stein J, et al. Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNF alpha is mediated via induction of NF-kappaB. Virology 1995; 208:197–206.

    Article  PubMed  CAS  Google Scholar 

  140. Prosch S, Heine AK, Volk HD, Kruger DH. CCAAT/enhancer-binding proteins alpha and beta negatively influence the capacity of tumor necrosis factor alpha to up-regulate the human cytomegalovirus IE1/2 enhancer/promoter by nuclear factor kappaB during monocyte differentiation. J Biol Chem 2001; 276:40,712–40,720.

    Article  PubMed  CAS  Google Scholar 

  141. Nettelbeck DM, Jerome V, Muller R. Gene therapy: designer promoters for tumour targeting. Trends Genet 2000; 16:174–181.

    Article  PubMed  CAS  Google Scholar 

  142. Dachs GU, Patterson AV, Firth JD, et al. Targeting gene expression to hypoxic tumor cells. Nat Med 1997; 3:515–520.

    Article  PubMed  CAS  Google Scholar 

  143. Sasaki S, Amara RR, Yeow WS, Pitha PM, Robinson HL. Regulation of DNA-raised immune responses by cotransfected interferon regulatory factors. J Virol 2002; 76:6652–6659.

    Article  PubMed  CAS  Google Scholar 

  144. Klinman DM, Yamshchikov G, Ishigatsubo Y. Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 1997; 158:3635–3639.

    PubMed  CAS  Google Scholar 

  145. Yamada H. Gursel I, Takeshita F, et al. Effect of suppressive SNA on CpG-induced immune activation. J Immunol 2002; 169:5590–5594.

    PubMed  CAS  Google Scholar 

  146. Kumar S, Epstein JE, Richie TL, et al. A multilateral effort to develop DNA vaccines against falciparum malaria. Trends Parasitol 2002; 18:129–135.

    Article  PubMed  CAS  Google Scholar 

  147. Barouch DH, Santra S, Tenner-Racz K, et al. Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp 120 and GM-CSF. J Immunol 2002; 168:562–568.

    PubMed  CAS  Google Scholar 

  148. Barouch DH, Santra S, Steenbeke TD, et al. Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J Immunol 1998; 161:1875–1882.

    PubMed  CAS  Google Scholar 

  149. Kwissa M, Unsinger J, Schirmbeck R, Hauser H, Reimann J. Polyvalent DNA vaccines with bidirectional promoters. J Mol Med 2000; 78:495–506.

    Article  PubMed  CAS  Google Scholar 

  150. Drew DR, Boyle JS, Lew AM, Lightowlers MW, Chaplin PJ, Strugnell RA. The comparative efficacy of CTLA-4 and L-selectin targeted DNA vaccines in mice and sheep. Vaccine 2001; 19:4417–4428.

    Article  PubMed  CAS  Google Scholar 

  151. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4 mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19:565–594.

    Article  PubMed  CAS  Google Scholar 

  152. Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002; 3:611–618.

    Article  PubMed  CAS  Google Scholar 

  153. Xiang R, Primus FJ, Ruehlmann JM, et al. A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembronic antigen-transgenic mice. J Immunol 2001; 167:4560–4565.

    PubMed  CAS  Google Scholar 

  154. van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67:2–17.

    PubMed  Google Scholar 

  155. Hanke T, Neumann VC, Blanchard TJ, et al. Effective induction of HIV-specific CTL by multi-epitope using gene gun in a combined vaccination regime. Vaccine 1999; 17:589–596.

    Article  PubMed  CAS  Google Scholar 

  156. Wee EG, Patel S, McMichael AJ, Hanke T. A DNA/MVA-based candidate human immunodeficiency virus vaccine for Kenya induces multi-specific T cell responses in rhesus macaques. J Gen Virol 2002; 83:75–80.

    PubMed  CAS  Google Scholar 

  157. Manthorpe M, Cornefert-Jensen F, Hartikka J, et al. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum Gene Ther 1993; 4:419–431.

    Article  PubMed  CAS  Google Scholar 

  158. Cheng L, Ziegelhoffer PR, Yang NS. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci USA 1993; 90:4455–4559.

    Article  PubMed  CAS  Google Scholar 

  159. Andre S, Seed B, Eberle J, Schraut W, Bultmann A, Haas J. Increased immune responses elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J Virol 1998; 72:1497–1503.

    PubMed  CAS  Google Scholar 

  160. Boyle JS, Koniaras C, Lew AM. Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization. Int Immunol 1997; 9:1897–1906.

    Article  PubMed  CAS  Google Scholar 

  161. Lewis PJ, Cox GJ, van Drunen Little-van den Hurk S, Babiuk LA. Polynucleotide vaccines in animals: enhancing and modulating responses. Vaccine 1997; 15:861–864.

    Article  PubMed  CAS  Google Scholar 

  162. Rice J, King CA, Spellerberg MB, Fairweather N, Stevenson FK. Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine 1999; 17:3030–3038.

    Article  PubMed  CAS  Google Scholar 

  163. Yoneyama H, Narumi S, Zhang Y, et al. Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J Exp Med 2002; 195:1257–1266.

    Article  PubMed  CAS  Google Scholar 

  164. Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 2000; 18:927–974.

    Article  PubMed  CAS  Google Scholar 

  165. Scheerlinck JY. Genetic adjuvants for DNA vaccines. Vaccine 2001; 19:2647–2656.

    Article  PubMed  CAS  Google Scholar 

  166. Strom TB, Steele AW, Nichols J. Genetically engineered proteins for immunoregulation. Transplant Proc 1995; 27:18–20.

    PubMed  CAS  Google Scholar 

  167. You Z, Huang X, Hester J, Toh HC, Chen SY. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res 2001; 61:3704–3711.

    PubMed  CAS  Google Scholar 

  168. Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW. Genetic fusion of chemokines to a self-tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 1999; 17:253–258.

    Article  PubMed  CAS  Google Scholar 

  169. Cappello P, Triebel F, Iezzi M, et al. LAG-3 enables DNA vaccination to persistently prevent mammary carcinogens in HER-2/neu transgenic BALB/c mice. Cancer Res 2003; 63:2518–2525.

    PubMed  CAS  Google Scholar 

  170. Wolchok JD, Gregor PD, Nordquist LT, Slovin SF, Scher HI. DNA vaccines: an active immunization strategy for prostate cancer. Semin Oncol 2003; 30:659–666.

    Article  PubMed  CAS  Google Scholar 

  171. Reisfeld RA, Niethammer AG, Luo Y, Xiang R. DNA vaccines designed to inhibit tumor growth by suppression of angiogenesis. Int Arch Allergy Immunol 2004; 133:295–304.

    Article  PubMed  CAS  Google Scholar 

  172. Maecker HT, Umetsu DT, DeKruyff RH, Levy S. DNA vaccination with cytokine fusion constructs biases the immune response to ovalbumin. Vaccine 1997; 15:1687–1696.

    Article  PubMed  CAS  Google Scholar 

  173. McConkey SJ, Reece WH, Moorthy VS, et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 2003; 9:729–735.

    Article  PubMed  CAS  Google Scholar 

  174. Nichols WW, Ledwith BJ, Manam SV, Troilo PJ. Potential DNA vaccine integration into host cell genome. Ann NY Acad Sci 1995; 772:30–39.

    Article  PubMed  CAS  Google Scholar 

  175. Ledwith BJ, Manam S, Troilo PJ, et al. Plasmid DNA vaccines: assay for integration into host genomic DNA. Dev Biol 2000; 104:33–43.

    CAS  Google Scholar 

  176. Subramanian G, Adams MD, Venter JC, Broder S. Implications of the human genome for understanding human biology and medicine. JAMA 2001; 286:2296–2307.

    Article  PubMed  CAS  Google Scholar 

  177. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annu Rev Immunol 1997; 15:617–648.

    Article  PubMed  CAS  Google Scholar 

  178. Roses AD. Genome-based pharmacogenetics and the pharmaceutical industry. Nat Rev Drug Discov 2002; 1:541–549.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kwak, H., Kaufman, H.L. (2006). DNA Vaccines for Cancer Immunotherapy. In: Disis, M.L. (eds) Immunotherapy of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-011-1:087

Download citation

Publish with us

Policies and ethics