Skip to main content

Discovery of Target Molecules for Cancer Immunotherapy by Genetic and Bioinformatic Approaches

  • Chapter
  • 1180 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

It has been a long-standing vision of scientists studying tumor immunology to use the immune system’s effectors for the therapy of cancer by directing them against target molecules expressed selectively on tumor cells. Different genetic approaches for discovery of such target candidates have been developed over the last 15 yr and are being pursued. The classical approaches apply expression cloning using either cancer-reactive T-lymphocytes or autoantibodies in crude patient sera as probes to identify target molecules of spontaneous immune responses. Recent concepts utilizing high-density microarray analysis, subtractive library approaches, or in silico cloning aim at the identification of genes with cancer cell-associated expression and subsequently address the immunogenicity of such molecules with reverse immunology. This chapter summarizes the peculiarities of these approaches, reflects on rationale criteria for selection of vaccine candidates, and discusses how integrated discovery and validation strategies may assist in the delivery of suitable targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gross L. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 1943; 3:326–333.

    Google Scholar 

  2. Klein G, Sjorgen HO, Klein E, et al. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res 1960; 20:1561–1572.

    PubMed  CAS  Google Scholar 

  3. Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 1957; 18:769–778.

    PubMed  CAS  Google Scholar 

  4. Donawho C, Kripke ML. Immunogenicity and cross-reactivity of syngeneic murine melanomas. Cancer Commun 1990; 2:101–107.

    PubMed  CAS  Google Scholar 

  5. Rouse BT, Rollinghoff M, Warner NL. Anti-theta serum-induced suppression of the cellular transfer of tumour-specific immunity to a syngeneic plasma cell tumour. Nat New Biol 1972; 238:116–117.

    PubMed  CAS  Google Scholar 

  6. Rouse BT, Rollinghoff M, Warner NL. Tumor immunity to murine plasma cell tumors. II. Essential role of T lymphocytes in immune response. Eur J Immunol 1973; 3:218–224.

    Article  PubMed  CAS  Google Scholar 

  7. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 1976; 193:1007–1008.

    Article  PubMed  CAS  Google Scholar 

  8. Taniguchi T, Matsui H, Fujita T, et al. Structure and expression of a cloned cDNA for human interleukin-2. Nature 1983; 302:305–310.

    Article  PubMed  CAS  Google Scholar 

  9. Gillis S, Smith KA. Long-term culture of tumour-specific cytotoxic T cells. Nature 1977; 268:154–156.

    Article  PubMed  CAS  Google Scholar 

  10. Livingston PO, Shiku H, Bean MA, et al. Cell-mediated cytotoxicity for cultured autologous melanoma cells. Int J Cancer 1979; 24:34–44.

    Article  PubMed  CAS  Google Scholar 

  11. Wolfel T, Klehmann E, Muller C, et al. Lysis of human melanoma cells by autologous cytolytic T-cell clones. Identification of human histocompatibility leukocyte antigen A2 as a restriction element for three different antigens. J Exp Med 1989; 170:797–810.

    Article  PubMed  CAS  Google Scholar 

  12. Van den Eynde EB, Hainaut P, Herin M, et al. Presence on a human melanoma of multiple antigens recognized by autologous CTL. Int J Cancer 1989; 44:634–640.

    Article  PubMed  Google Scholar 

  13. Topalian SL, Solomon D, Rosenberg SA. Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 1989; 142:3714–3725.

    PubMed  CAS  Google Scholar 

  14. van der Bruggen BP, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254:1643–1647.

    Article  PubMed  Google Scholar 

  15. Herin M, Lemoine C, Weynants P, et al. Production of stable cytolytic T-cell clones directed against autologous human melanoma. Int J Cancer 1987; 39:390–396.

    Article  PubMed  CAS  Google Scholar 

  16. Traversari C, van der Bruggen BP, Luescher IF, et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992; 176:1453–1457.

    Article  PubMed  CAS  Google Scholar 

  17. Van den Eynde BJ, van der Bruggen BP. T-cell defined tumor antigens. Curr Opin Immunol 1997; 9:684–693.

    Article  PubMed  Google Scholar 

  18. van der Bruggen BP, Zhang Y, Chaux P, et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 2002; 188:51–64.

    Article  Google Scholar 

  19. Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 2004; 54:187–207.

    Article  PubMed  CAS  Google Scholar 

  20. Wang RF, Appella E, Kawakami Y, et al. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184:2207–2216.

    Article  PubMed  CAS  Google Scholar 

  21. Wang RF, Wang X, Atwood AC, et al. Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science 1999; 284:1351–1354.

    Article  PubMed  CAS  Google Scholar 

  22. Chiari R, Hames G, Stroobant V, et al. Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class II molecules. Cancer Res 2000; 60:4855–4863.

    PubMed  CAS  Google Scholar 

  23. Toes RE, Ossendorp F, Offringa R, Melief CJ. CD4 T cells and their role in antitumor immune responses. J Exp Med 1999; 189:753–756.

    Article  PubMed  CAS  Google Scholar 

  24. Falk K, Rotzschke O, Rammensee HG. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 1990; 348:248–251.

    Article  PubMed  CAS  Google Scholar 

  25. Rotzschke O, Falk K, Deres K, et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348:252–254.

    Article  PubMed  CAS  Google Scholar 

  26. Cox AL, Skipper J, Chen Y, et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T-cell lines. Science 1994; 264:716–719.

    Article  PubMed  CAS  Google Scholar 

  27. Sahin U, Tureci O, Pfreundschuh M. Serological identification of human tumor antigens. Curr Opin Immunol 1997; 9:709–716.

    Article  PubMed  CAS  Google Scholar 

  28. Hartley SB, Cooke MP, Fulcher DA, et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell 1993; 72:325–335.

    Article  PubMed  CAS  Google Scholar 

  29. Sahin U, Tureci O, Schmitt H, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 1995; 92:11,810–11,813.

    Article  PubMed  CAS  Google Scholar 

  30. Tureci O, Usener D, Schneider S, Sahin U. Identification of tumor-associated autoantigens with SEREX. Methods Mol Med 2004; 109:137–154.

    Google Scholar 

  31. Tureci O, Sahin U, Pfreundschuh M. Serological analysis of human tumor antigens: molecular definition and implications. Mol Med Today 1997; 3:342–349.

    Article  PubMed  CAS  Google Scholar 

  32. Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun 2004; 4:1.

    PubMed  Google Scholar 

  33. Old LJ, Chen YT. New paths in human cancer serology. J Exp Med 1998; 187:1163–1167.

    Article  PubMed  CAS  Google Scholar 

  34. Jongeneel V. Towards a cancer immunome database. Cancer Immun 2001; 1:3.

    PubMed  CAS  Google Scholar 

  35. Krause P, Tureci O, Micke P, et al. SeroGRID: an improved method for the rapid selection of antigens with disease related immunogenicity. J Immunol Methods 2003; 283:261–267.

    Article  PubMed  CAS  Google Scholar 

  36. Scanlan MJ, Gout I, Gordon CM, et al. Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immun 2001; 1:4.

    PubMed  CAS  Google Scholar 

  37. Scanlan MJ, Welt S, Gordon CM, et al. Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res 2002; 62:4041–4047.

    PubMed  CAS  Google Scholar 

  38. Ludewig B, Krebs P, Metters H, et al. Molecular characterization of virus-induced autoantibody responses. J Exp Med 2004; 200:637–646.

    Article  PubMed  CAS  Google Scholar 

  39. Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997; 94:1914–1918.

    Article  PubMed  CAS  Google Scholar 

  40. Stockert E, Jager E, Chen YT, et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 1998; 187:1349–1354.

    Article  PubMed  CAS  Google Scholar 

  41. Zeng G, Aldridge ME, Wang Y, et al. Dominant B cell epitope from NY-ESO-1 recognized by sera from a wide spectrum of cancer patients: implications as a potential biomarker. Int J Cancer 2004; 4:268–273.

    Google Scholar 

  42. Valmori D, Dutoit V, Lienard D, et al. Naturally occurring human lymphocyte antigen-A2 restricted CD8+ T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res 2000; 60:4499–4506.

    PubMed  CAS  Google Scholar 

  43. Jager E, Chen YT, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-, definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998; 187:265–270.

    Article  PubMed  CAS  Google Scholar 

  44. Aarnoudse CA, van den Doel PB, Heemskerk B, Schrier PI. Interleukin-2-induced, melanoma-specific T cells recognize CAMEL, an unexpected translation product of LAGE-1. Int J Cancer 1999;82:442–448.

    Article  PubMed  CAS  Google Scholar 

  45. Benlalam H, Linard B, Guilloux Y, et al. Identification of five new HLA-B*3501-restricted epitopes derived from common melanoma-associated antigens, spontaneously recognized by tumor-infiltrating lymphocytes. J Immunol 2003; 171:6283–6289.

    PubMed  CAS  Google Scholar 

  46. Jager E, Jager D, Karbach J, et al. Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101-0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J Exp Med 2000; 191:625–630.

    Article  PubMed  CAS  Google Scholar 

  47. Zeng G, Touloukian CE, Wang X, et al. Identification of CD4+ T cell epitopes from NY-ESO-1 presented by HLA-DR molecules. J Immunol 2000; 165:1153–1159.

    PubMed  CAS  Google Scholar 

  48. Jager E, Chen YT, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-, definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998; 187:265–270.

    Article  PubMed  CAS  Google Scholar 

  49. Davis ID, Chen W, Jackson H, et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 2004; 101:10,697–10,702.

    Article  PubMed  CAS  Google Scholar 

  50. Ayyoub M, Hesdorffer CS, Metthez G, et al. Identification of an SSX-2 epitope presented by dendritic cells to circulating autologous CD4+ T cells. J Immunol 2004; 172:7206–7211.

    PubMed  CAS  Google Scholar 

  51. Ayyoub M, Hesdorffer CS, Montes M, et al. An immunodominant SSX-2-derived epitope recognized by CD4+ T cells in association with HLA-DR. J Clin Invest 2004; 113:1225–1233.

    Article  PubMed  CAS  Google Scholar 

  52. Sato Y, Nabeta Y, Tsukahara T, et al. Detection and induction of CTLs specific for SYT-SSX-derived peptides in HLA-A24(+) patients with synovial sarcoma. J Immunol 2002; 169:1611–1618.

    PubMed  CAS  Google Scholar 

  53. Ayyoub M, Stevanovic S, Sahin U, et al. Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma. J Immunol 2002; 168:1717–1722.

    PubMed  CAS  Google Scholar 

  54. Tureci O, Sahin U, Schobert I, et al. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 1996; 56:4766–4772.

    PubMed  CAS  Google Scholar 

  55. Koslowski M, Bell C, Seitz G, et al. Frequent nonrandom activation of germ-line genes in human cancer. Cancer Res 2004; 64:5988–5993.

    Article  PubMed  CAS  Google Scholar 

  56. van den Berg N, Crampton BG, Hein I, et al. High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis. Biotechniques 2004; 37:818–824.

    PubMed  Google Scholar 

  57. Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 1996; 93:6025–6030.

    Article  PubMed  CAS  Google Scholar 

  58. Herfort MR, Garber AT. Simple and efficient subtractive hybridization screening. Biotechniques 1991; 11:598, 600, 602–598, 600, 604.

    PubMed  CAS  Google Scholar 

  59. Rubenstein JL, Brice AE, Ciaranello RD, et al. Subtractive hybridization system using single-stranded phagemids with directional inserts. Nucleic Acids Res 1990; 18:4833–4842.

    Article  PubMed  CAS  Google Scholar 

  60. Timblin C, Battey J, Kuehl WM. Application for PCR technology to subtractive cDNA cloning: identification of genes expressed specifically in murine plasmacytoma cells. Nucleic Acids Res 1990; 18:1587–1593.

    Article  PubMed  CAS  Google Scholar 

  61. Hubank M, Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 1994; 22:5640–5648.

    Article  PubMed  CAS  Google Scholar 

  62. Lethe B, Lucas S, Michaux L, et al. LAGE-1, a new gene with tumor specificity. Int J Cancer 1998; 76:903–908.

    Article  PubMed  CAS  Google Scholar 

  63. Gure AO, Stockert E, Arden KC, et al. CT10: a new cancer-testis (CT) antigen homologous to CT7 and the MAGE family, identified by representational-difference analysis. Int J Cancer 2000; 85:726–732.

    Article  PubMed  CAS  Google Scholar 

  64. Martelange V, De Smet C, De Plaen E, et al. Identification on a human sarcoma of two new genes with tumor-specific expression. Cancer Res 2000; 60:3848–3855.

    PubMed  CAS  Google Scholar 

  65. Tureci O, Sahin U, Koslowski M, et al. A novel tumour associated leucine zipper protein targeting to sites of gene transcription and splicing. Oncogene 2002; 21:3879–3888.

    Article  PubMed  CAS  Google Scholar 

  66. Tureci O, Sahin U, Zwick C, et al. Identification of a meiosis-specific protein as a member of the class of cancer/testis antigens. Proc Natl Acad Sci USA 1998; 95:5211–5216.

    Article  PubMed  CAS  Google Scholar 

  67. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet 1999; 21:20–44.

    Article  PubMed  CAS  Google Scholar 

  68. Schena M. Genome analysis with gene expression microarrays. Bioessays 1996; 18:427–431.

    Article  PubMed  CAS  Google Scholar 

  69. Han H, Bearss DJ, Browne LW, et al. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 2002; 62:2890–2896.

    PubMed  CAS  Google Scholar 

  70. Jiang Y, Harlocker SL, Molesh DA, et al. Discovery of differentially expressed genes in human breast cancer using subtracted cDNA libraries and cDNA microarrays. Oncogene 2002; 21:2270–2282.

    Article  PubMed  CAS  Google Scholar 

  71. Tureci O, Ding J, Hilton H, et al. Computational dissection of tissue contamination for identification of colon cancer-specific expression profiles. FASEB J 2003; 17:376–385.

    Article  PubMed  CAS  Google Scholar 

  72. Sturniolo T, Bono E, Ding J, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 1999; 17:555–561.

    Article  PubMed  CAS  Google Scholar 

  73. Rammensee HG, Weinschenk T, Gouttefangeas C, Stevanovic S. Towards patient-specific tumor antigen selection for vaccination. Immunol Rev 2002; 188:164–176.

    Article  PubMed  CAS  Google Scholar 

  74. Buus S, Claesson MH. Identifying multiple tumor-specific epitopes from large-scale screening for overexpressed mRNA. Curr Opin Immunol 2004; 16:137–142.

    Article  PubMed  CAS  Google Scholar 

  75. Weinschenk T, Gouttefangeas C, Schirle M, et al. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 2002; 62:5818–5827.

    PubMed  CAS  Google Scholar 

  76. Lal A, Lash AE, Altschul SF, et al. A public database for gene expression in human cancers. Cancer Res 1999; 59:5403–5407.

    PubMed  CAS  Google Scholar 

  77. Vasmatzis G, Essand M, Brinkmann U, et al. Discovery of three genes specifically expressed in human prostate by expressed sequence tag database analysis. Proc Natl Acad Sci USA 1998; 95:300–304.

    Article  PubMed  CAS  Google Scholar 

  78. Bera TK, Lee S, Salvatore G, et al. MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol Med 2001; 7:509–516.

    PubMed  CAS  Google Scholar 

  79. Iavarone C, Wolfgang C, Kumar V, et al. PAGE4 is a cytoplasmic protein that is expressed in normal prostate and in prostate cancers. Mol Cancer Ther 2002; 1:329–335.

    PubMed  CAS  Google Scholar 

  80. Scanlan MJ, Gordon CM, Williamson B, et al. Identification of cancer/testis genes by database mining and mRNA expression analysis. Int J Cancer 2002; 98:485–492.

    Article  PubMed  CAS  Google Scholar 

  81. Dong XY, Su YR, Qian XP, et al. (2003) Identification of two novel CT antigens and their capacity to elicit antibody response in hepatocellular carcinoma patients. Br J Cancer 2003; 89:291–297.

    Article  PubMed  CAS  Google Scholar 

  82. Koslowski M, Tureci O, Bell C, et al. Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer Res 2002; 62:6750–6755.

    PubMed  CAS  Google Scholar 

  83. Xu Q, Lee C. Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. Nucleic Acids Res 2003; 31:5635–5643.

    Article  PubMed  CAS  Google Scholar 

  84. Hui L, Zhang X, Wu X, Lin Z, Wang Q, Li Y, Hu G. Identification of alternatively spliced mRNA variants related to cancers by genome-wide ESTs alignment. Oncogene 2004; 23:3013–3023.

    Article  PubMed  CAS  Google Scholar 

  85. De Smet C, Lurquin C, Lethe B, et al. DNA methylation is the primary silencing mechanism for a set of germ line-and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 1999; 19:7327–7335.

    PubMed  Google Scholar 

  86. De Smet C, De Backer O, Faraoni I, et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci USA 1996; 93:7149–7153.

    Article  PubMed  Google Scholar 

  87. Sahin U, Tureci O, Chen YT, et al. Expression of multiple cancer/testis (CT) antigens in breast cancer and melanoma: basis for polyvalent CT vaccine strategies. Int J Cancer 1998; 78:387–389.

    Article  PubMed  CAS  Google Scholar 

  88. Ramirez-Montagut T, Turk MJ, Wolchok JD, et al. Immunity to melanoma: unraveling the relation of tumor immunity and autoimmunity. Oncogene 2003; 22:3180–3187.

    Article  PubMed  CAS  Google Scholar 

  89. Zarour H, De Smet C, Lehmann F, et al. The majority of autologous cytolytic T-lymphocyte clones derived from peripheral blood lymphocytes of a melanoma patient recognize an antigenic peptide derived from gene Pmel17/gp100. J Invest Dermatol 1996; 107:63–67.

    Article  PubMed  CAS  Google Scholar 

  90. Morishita M, Uchimaru K, Sato K, et al. Thyroglobulin-pulsed human monocyte-derived dendritic cells induce CD4+ T cell activation. Int J Mol Med 2004; 13:33–39.

    PubMed  CAS  Google Scholar 

  91. Schott M, Feldkamp J, Klucken M, et al. Calcitonin-specific antitumor immunity in medullary thyroid carcinoma following dendritic cell vaccination. Cancer Immunol Immunother 2002; 51:663–668.

    Article  PubMed  CAS  Google Scholar 

  92. Jager D, Unkelbach M, Frei C, et al. Identification of tumor-restricted antigens NY-BR-1, SCP-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum. Cancer Immun 2002; 2:5.

    PubMed  Google Scholar 

  93. Heath JK, White SJ, Johnstone CN, et al. The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily. Proc Natl Acad Sci USA 1997; 94:469–474.

    Article  PubMed  CAS  Google Scholar 

  94. Tsang KY, Zaremba S, Nieroda CA, et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 1995; 87:982–990.

    Article  PubMed  CAS  Google Scholar 

  95. Brinkman BM. Splice variants as cancer biomarkers. Clin Biochem 2004; 37:584–594.

    Article  PubMed  CAS  Google Scholar 

  96. de Wit NJ, Weidle UH, Ruiter DJ, van Muijen GN. Expression profiling of MMA-1a and splice variant MMA-1b: new cancer/testis antigens identified in human melanoma. Int J Cancer 2002; 98:547–553.

    Article  PubMed  CAS  Google Scholar 

  97. Sanchez Lockhart M, Hajos SE, Basilio FM, et al. Splice variant expression of CD44 in patients with breast and ovarian cancer. Oncol Rep 2001; 8:145–151.

    PubMed  CAS  Google Scholar 

  98. Fisk B, Blevins TL, Wharton JT, Ioannides CG. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 1995; 181:2109–2117.

    Article  PubMed  CAS  Google Scholar 

  99. Hirohashi Y, Torigoe T, Maeda A, et al. An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res 2002; 8:1731–1739.

    PubMed  CAS  Google Scholar 

  100. Andersen MH, Pedersen LO, Becker JC, Straten PT. Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 2001; 61:869–872.

    PubMed  CAS  Google Scholar 

  101. Schmitz M, Diestelkoetter P, Weigle B, et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 2000; 60:4845–4849.

    PubMed  CAS  Google Scholar 

  102. Bellantuono I, Gao L, Parry S, et al. Two distinct HLA-A0201-presented epitopes of the Wilms’ tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 2002; 100:3835–3837.

    Article  PubMed  CAS  Google Scholar 

  103. Oka Y, Elisseeva OA, Tsuboi A, et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 2000; 51:99–107.

    Article  PubMed  CAS  Google Scholar 

  104. Tamaki H, Ogawa H, Inoue K, et al. Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood 1996; 88:4396–4398.

    PubMed  CAS  Google Scholar 

  105. Disis ML, Cheever MA. Oncogenic proteins as tumor antigens. Curr Opin Immunol 1996; 8:637–642.

    Article  PubMed  CAS  Google Scholar 

  106. Wolfel T, Hauer M, Schneider J, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269:1281–1284.

    Article  PubMed  CAS  Google Scholar 

  107. Robbins PF, El Gamil M, Li YF, et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 1996; 183:1185–1192.

    Article  PubMed  CAS  Google Scholar 

  108. Mandruzzato S, Brasseur F, Andry G, et al. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 1997; 186:785–793.

    Article  PubMed  CAS  Google Scholar 

  109. Skipper JC, Hendrickson RC, Gulden PH, et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 1996; 183:527–534.

    Article  PubMed  CAS  Google Scholar 

  110. Finn OJ, Jerome KR, Henderson RA, et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol Rev 1995; 145:61–89.

    Article  PubMed  CAS  Google Scholar 

  111. Zwaveling S, Vierboom MP, Ferreira Mota SC, et al. Antitumor efficacy of wild-type p53-specific CD4(+) T-helper cells. Cancer Res 2002; 62:6187–6193.

    PubMed  CAS  Google Scholar 

  112. Wang RF, Wang X, Rosenberg SA. Identification of a novel major histocompatibility complex class II-restricted tumor antigen resulting from a chromosomal rearrangement recognized by CD4(+) T cells. J Exp Med 1999; 189:1659–1668.

    Article  PubMed  CAS  Google Scholar 

  113. Zarling AL, Ficarro SB, White FM, et al. Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J Exp Med 2000; 192:1755–1762.

    Article  PubMed  CAS  Google Scholar 

  114. Ficarro SB, McCleland ML, Stukenberg PT, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002; 20:301–305.

    Article  PubMed  CAS  Google Scholar 

  115. Galloway DA. Papillomavirus vaccines in clinical trials. Lancet Infect Dis 2003; 3:469–475.

    Article  PubMed  CAS  Google Scholar 

  116. Israel BF, Kenney SC. Virally targeted therapies for EBV-associated malignancies. Oncogene 2003; 22:5122–5130.

    Article  PubMed  CAS  Google Scholar 

  117. Sherman LA, Morgan DJ, Nugent CT, et al. Self-tolerance and the composition of T cell repertoire. Immunol Res 2000; 21:305–313.

    Article  PubMed  CAS  Google Scholar 

  118. Ohashi PS. Immunology. Exposing thy self. Science 2002; 298:1348–1349.

    Article  PubMed  CAS  Google Scholar 

  119. Ressing ME, Sette A, Brandt RM, et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 1995; 154:5934–5943.

    PubMed  CAS  Google Scholar 

  120. Gotter J, Brors B, Hergenhahn M, et al. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 2004; 199:155–166.

    Article  PubMed  CAS  Google Scholar 

  121. Gross DA, Graff-Dubois S, Opolon P, et al. High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J Clin Invest 2004; 113:425–433.

    Article  PubMed  CAS  Google Scholar 

  122. Sette A, Keogh E, Ishioka G, et al. Epitope identification and vaccine design for cancer immunotherapy. Curr Opin Investig Drugs 2002; 3:132–139.

    PubMed  CAS  Google Scholar 

  123. Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics 1995; 41:178–228.

    Article  PubMed  CAS  Google Scholar 

  124. Buus S. Description and prediction of peptide-MHC binding: the “human MHC project.” Curr Opin Immunol 1999; 11:209–213.

    Article  PubMed  CAS  Google Scholar 

  125. Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994; 152:163–175.

    PubMed  CAS  Google Scholar 

  126. Bender A, Sapp M, Schuler G, et al. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 1996; 196:121–135.

    Article  PubMed  CAS  Google Scholar 

  127. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179:1109–1118.

    Article  PubMed  CAS  Google Scholar 

  128. Toes RE, Hoeben RC, van der Voort EI, et al. Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion. Proc Natl Acad Sci USA 1997; 94:14,660–14,665.

    Article  PubMed  CAS  Google Scholar 

  129. Brossart P, Goldrath AW, Butz EA, et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 1997; 158:3270–326.

    PubMed  CAS  Google Scholar 

  130. Miyahira Y, Murata K, Rodriguez D, et al. Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 1995; 181:45–54.

    Article  PubMed  CAS  Google Scholar 

  131. Fujihashi K, McGhee JR, Beagley KW, et al. Cytokine-specific ELISPOT assay. Single cell analysis of IL-2, IL-4 and IL-6 producing cells. J Immunol Methods 1993; 160:181–189.

    Article  PubMed  CAS  Google Scholar 

  132. Altman JD, Moss PA, Goulder PJ, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274:94–96.

    Article  PubMed  CAS  Google Scholar 

  133. Pajot A, Michel ML, Fazilleau N, et al. A mouse model of human adaptive immune functions: HLAA2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Eur J Immunol 2004; 34:3060–3069.

    Article  PubMed  CAS  Google Scholar 

  134. Theobald M, Biggs J, Dittmer D, et al. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci USA 1995; 92:11,993–11,997.

    Article  PubMed  CAS  Google Scholar 

  135. Visseren MJ, van der Burg SH, van der Voort EI, et al. Identification of HLA-A*0201-restricted CTL epitopes encoded by the tumor-specific MAGE-2 gene product. Int J Cancer 1997; 73:125–130.

    Article  PubMed  CAS  Google Scholar 

  136. Houghton AN, Guevara-Patino JA. Immune recognition of self in immunity against cancer. J Clin Invest 2004; 114:468–471.

    Article  PubMed  CAS  Google Scholar 

  137. Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998; 4:844–847.

    Article  PubMed  CAS  Google Scholar 

  138. Jungbluth AA, Chen YT, Stockert E, et al. Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 2001; 92:856–860.

    Article  PubMed  CAS  Google Scholar 

  139. Dhodapkar MV, Osman K, Teruya-Feldstein J, et al. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 2003; 3:9.

    PubMed  Google Scholar 

  140. Riker A, Cormier J, Panelli M, et al. Immune selection after antigen-specific immunotherapy of melanoma. Surgery 1999; 126:112–120.

    PubMed  CAS  Google Scholar 

  141. Thurner B, Haendle I, Roder C, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocytederived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190:1669–1678.

    Article  PubMed  CAS  Google Scholar 

  142. Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002; 99:16,168–16,173.

    Article  PubMed  CAS  Google Scholar 

  143. Jager E, Ringhoffer M, Karbach J, et al. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 1996; 66:470–476.

    Article  PubMed  CAS  Google Scholar 

  144. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411:494–498.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Türeci, Ö., Klamp, T., Koslowski, M., Kreiter, S., Sahin, U. (2006). Discovery of Target Molecules for Cancer Immunotherapy by Genetic and Bioinformatic Approaches. In: Disis, M.L. (eds) Immunotherapy of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-011-1:001

Download citation

Publish with us

Policies and ethics