Skip to main content

New Signal Transduction Paradigms

  • Chapter
  • 1163 Accesses

Part of the book series: The Receptors ((REC))

Abstract

All adrenergic receptors (ARs) are members of the G protein-coupled receptor superfamily and have been assumed to initiate signals primarily by activation of heterotrimeric G proteins. The three major AR families (α1, α2, β) each contain three subtypes, with all receptors within a subfamily acting through the same G proteins to initiate the same signals. α1-ARs activate Gq/11 to increase Ca2+, α2-ARs activate Gi/o to decrease cyclic adenosine 5′-monophosphate, and β-ARs activate Gs to increase cyclic adenosine 5′-monophosphate. This raises questions regarding how apparently redundant receptor subtypes have survived evolutionarily and continue to mediate distinct functions in all known higher organisms. Although the primary importance of G proteins in signaling is not in doubt, it is increasingly clear that understanding AR signaling requires additional complexity. ARs have now been shown also to interact directly with other proteins, which may be important in signaling. One class includes other G protein-coupled receptors, and increasing reports of receptor heterodimerization are transforming our view of these receptors as solitary cellular sentinels for detecting incoming signals. Another class is adaptor or scaffolding proteins responsible for local organization of specific signaling complexes, for which proximity of effector molecules may result in increased or unexpected responses. Other proteins, such as regulators of G protein signaling, may affect the specificity or extent of G protein activation. Finally, internalization of receptors may be required for certain responses, which may be independent of G protein signaling. Thus, the traditional view of a linear signaling cascade of ligand/receptor/G protein/second messenger activation is turning into a much more complex, combinatorial, and context-dependent view of AR signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bockaert J, Marin P, Dumuis A, Fagni L. The “magic tail” of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett 2003;546:65–72.

    Article  PubMed  CAS  Google Scholar 

  2. Otaki JM, Firestein S. Length analyses of mammalian G-protein-coupled receptors. J Theor Biol 2001;211:77–100.

    Article  PubMed  CAS  Google Scholar 

  3. Gilman AG. Nobel Lecture. G proteins and regulation of adenylyl cyclase. Biosci Rep 1995;15:65–97.

    Article  PubMed  CAS  Google Scholar 

  4. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002;3:639–650.

    Article  PubMed  CAS  Google Scholar 

  5. Chen JG, Willard FS, Huang J, et al. A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 2003;301:1728–1731.

    Article  PubMed  CAS  Google Scholar 

  6. Furchgott RF. Pharmacological characterization of receptors: its relation to radioligand-binding studies. Fed Proc 1978;37:115–120.

    PubMed  CAS  Google Scholar 

  7. Guo DF, Sun YL, Hamet P, Inagami T. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res 2001;11:165–180.

    Article  PubMed  CAS  Google Scholar 

  8. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103:211–225.

    Article  PubMed  CAS  Google Scholar 

  9. Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase pathway mediated by G-protein βγ subunits. Nature 1994;369:418–420.

    Article  PubMed  CAS  Google Scholar 

  10. Zhong H, Minneman KP. Differential activation of mitogen-activated protein kinase pathways in PC12 cells by closely related α1-adrenergic receptor subtypes. J Neurochem 1999;72:2388–2396.

    Article  PubMed  CAS  Google Scholar 

  11. Koch WJ, Hawes BE, Allen LF, Lefkowitz RJ. Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G βγ activation of p21ras. Proc Natl Acad Sci USA 1994;91:12,706–12,710.

    Article  PubMed  CAS  Google Scholar 

  12. Crespo P, Cachero TG, Xu N, Gutkind JS. Dual effect of β-adrenergic receptors on mitogen-activated protein kinase. Evidence for a βγ-dependent activation and a G α s-cAMP-mediated inhibition. J Biol Chem 1995;270:25,259–25,265.

    Article  PubMed  CAS  Google Scholar 

  13. Williams NG, Zhong H, Minneman KP. Differential coupling of α1, α2, and β-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected PC12 cells. J Biol Chem 1998;273:24,624–24,632.

    Article  PubMed  CAS  Google Scholar 

  14. Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi-and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem 1997;272:19,125–19,132.

    Article  PubMed  CAS  Google Scholar 

  15. Zhong H, Minneman KP. Activation of tyrosine kinases by α1A-adrenergic and growth factor receptors in transfected PC12 cells. Biochem J 1999;344:889–894.

    Article  PubMed  CAS  Google Scholar 

  16. Zhong H, Murphy TJ, Minneman KP. Activation of signal transducers and activators of transcription by α1a-adrenergic receptor stimulation in PC12 cells. Mol Pharmacol 2000;57:961–967.

    PubMed  CAS  Google Scholar 

  17. Ali MS, Sayeski PP, Bernstein KE. Jak2 acts as both a STAT1 kinase and as a molecular bridge linking STAT1 to the angiotensin II AT1 receptor. J Biol Chem 2000;275:15,586–15,593.

    Article  PubMed  CAS  Google Scholar 

  18. Wilson KM, Minneman KP. Pertussis toxin inhibits norepinephrine-stimulated inositol phosphate formation in primary brain cell cultures. Mol Pharmacol 1990;38:274–281.

    PubMed  CAS  Google Scholar 

  19. Minneman KP, Lee D, Zhong H, Berts A, Abbott KL, Murphy TJ. Transcriptional responses to growth factor and G protein-coupled receptors in PC12 cells: comparison of 1-adrenergic receptor subtypes. J Neurochem 2000;74:2392–2400.

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez-Cabrera PJ, Gaivin RJ, Yun J, et al. Genetic profiling of α1-adrenergic receptor subtypes by oligonucleotide microarrays: coupling to interleukin-6 secretion but differences in STAT3 phosphorylation and gp-130. Mol Pharmacol 2003;63:1104–1116.

    Article  PubMed  CAS  Google Scholar 

  21. Chaudhry A, MacKenzie RG, Georgic LM, Granneman JG. Differential interaction of β1-and β3-adrenergic receptors with Gi in rat adipocytes. Cell Signal 1994;6:457–465.

    Article  PubMed  CAS  Google Scholar 

  22. Xiao RP, Avdonin P, Zhou YY, et al. Coupling of β2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999;84:43–52.

    PubMed  CAS  Google Scholar 

  23. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390:88–91.

    Article  PubMed  CAS  Google Scholar 

  24. Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ. Functional desensitization of the isolated β-adrenergic receptor by the β-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci USA 1987;84:8879–8882.

    Article  PubMed  CAS  Google Scholar 

  25. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 1990;248:1547–1550.

    Article  PubMed  CAS  Google Scholar 

  26. Hall RA, Premont RT, Chow CW, et al. The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 1998;392:626–630.

    Article  PubMed  CAS  Google Scholar 

  27. Hall RA, Ostedgaard LS, Premont RT, et al. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci USA 1998;95:8496–8501.

    Article  PubMed  CAS  Google Scholar 

  28. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 1999;401:286–290.

    Article  PubMed  CAS  Google Scholar 

  29. Xiang Y, Kobilka B. The PDZ-binding motif of the β2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. Proc Natl Acad Sci USA 2003;100:10,776–10,781.

    Article  PubMed  CAS  Google Scholar 

  30. Scott JD. A-kinase-anchoring proteins and cytoskeletal signalling events. Biochem Soc Trans 2003;31:87–89.

    Article  PubMed  CAS  Google Scholar 

  31. Shih M, Lin F, Scott JD, Wang HY, Malbon CC. Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem 1999;274:1588–1595.

    Article  PubMed  CAS  Google Scholar 

  32. Fan G, Shumay E, Wang H, Malbon CC. The scaffold protein gravin (cAMPdependent protein kinase-anchoring protein 250) binds the β2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem 2001;276:24,005–24,014.

    Article  PubMed  CAS  Google Scholar 

  33. Lin F, Wang H, Malbon CC. Gravin-mediated formation of signaling complexes in β2-adrenergic receptor desensitization and resensitization. J Biol Chem 2000;275:19,025–19,034.

    Article  PubMed  CAS  Google Scholar 

  34. Fraser ID, Cong M, Kim J, et al. Assembly of an A kinase-anchoring protein-β2-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr Biol 2000;10:409–412.

    Article  PubMed  CAS  Google Scholar 

  35. Hu LA, Tang Y, Miller WE, et al. β1-Adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of β1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J Biol Chem 2000;275:38,659–38,666.

    Article  PubMed  CAS  Google Scholar 

  36. Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA. β1-Adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem 2001;276:41,310–41,317.

    Article  PubMed  CAS  Google Scholar 

  37. Pak Y, Pham N, Rotin D. Direct binding of the β1 adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Mol Cell Biol 2002;22:7942–7952.

    Article  PubMed  CAS  Google Scholar 

  38. Fan G, Shumay E, Malbon CC, Wang H. c-Src tyrosine kinase binds the β2-adrenergic receptor via phospho-Tyr-350, phosphorylates G-protein-linked receptor kinase 2, and mediates agonist-induced receptor desensitization. J Biol Chem 2001;276:13,240–13,247.

    Article  PubMed  CAS  Google Scholar 

  39. Luttrell LM, Ferguson SS, Daaka Y, et al. β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 1999;283:655–661.

    Article  PubMed  CAS  Google Scholar 

  40. Cao W, Luttrell LM, Medvedev AV, et al. Direct binding of activated c-Src to the β3-adrenergic receptor is required for MAP kinase activation. J Biol Chem 2000;275:38,131–38,134.

    Article  PubMed  CAS  Google Scholar 

  41. Tang Y, Hu LA, Miller WE, et al. Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the β1-adrenergic receptor. Proc Natl Acad Sci USA 1999;96:12,559–12,564.

    Article  PubMed  CAS  Google Scholar 

  42. Klein U, Ramirez MT, Kobilka BK, von Zastrow M. A novel interaction between adrenergic receptors and the α-subunit of eukaryotic initiation factor 2B. J Biol Chem 1997;272:19,099–19,102.

    Article  PubMed  CAS  Google Scholar 

  43. Nakaoka H, Perez DM, Baek KJ, et al. Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 1994;264:1593–1596.

    Article  PubMed  CAS  Google Scholar 

  44. Chen S, Lin F, Iismaa S, Lee KN, Birckbichler PJ, Graham RM. α1-Adrenergic receptor signaling via Gh is subtype specific and independent of its transglutaminase activity. J Biol Chem 1996;271:32,385–391.

    Article  PubMed  CAS  Google Scholar 

  45. Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM. Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 2001;276:20,673–20,678.

    Article  PubMed  CAS  Google Scholar 

  46. Xu Z, Hirasawa A, Shinoura H, Tsujimoto G. Interaction of the α1B-adrenergic receptor with gC1q-R, a multifunctional protein. J Biol Chem 1999;274:21,149–21,154.

    Article  PubMed  CAS  Google Scholar 

  47. Ghebrehiwet B, Lim BL, Kumar R, Feng X, Peerschke EI. gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection. Immunol Rev 2001;180:65–77.

    Article  PubMed  CAS  Google Scholar 

  48. Xu Z, Hirasawa A, Shinoura H, Tsujimoto G. Interaction of the α1B-adrenergic receptor with gC1q-R, a multifunctional protein. J Biol Chem 1999;274:21,149–21,154.

    Article  PubMed  CAS  Google Scholar 

  49. Pupo AS, Minneman KP. Specific interactions between gC1qR and α1-adrenoceptor subtypes. J Recept Signal Transduct Res 2003;23:185–195.

    Article  PubMed  CAS  Google Scholar 

  50. Schepens J, Cuppen E, Wieringa B, Hendriks W. The neuronal nitric oxide synthase PDZ motif binds to-G(D,E)XV* carboxyterminal sequences. FEBS Lett 1997;409:53–56.

    Article  PubMed  CAS  Google Scholar 

  51. Pupo AS, Minneman KP. Interaction of neuronal nitric oxide synthase with α1-adrenergic receptor subtypes in transfected HEK-293 cells. BMC Pharmacol 2002;2:17.

    Article  PubMed  Google Scholar 

  52. Diviani D, Lattion AL, Abuin L, Staub O, Cotecchia S. The adaptor complex 2 directly interacts with the α1b-adrenergic receptor and plays a role in receptor endocytosis. J Biol Chem 2003;278:19,331–19,340.

    Article  PubMed  CAS  Google Scholar 

  53. Richman JG, Brady AE, Wang Q, Hensel JL, Colbran RJ, Limbird LE. Agonistregulated interaction between α2-adrenergic receptors and spinophilin. J Biol Chem 2001;276:15,003–15,008.

    Article  PubMed  CAS  Google Scholar 

  54. Brady AE, Limbird LE. G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 2002;14:297–309.

    Article  PubMed  CAS  Google Scholar 

  55. Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 2000;40:617–647.

    Article  PubMed  CAS  Google Scholar 

  56. Wang Q, Limbird LE. Regulated interactions of the α2A adrenergic receptor with spinophilin, 14-3-3 zeta, and arrestin 3. J Biol Chem 2002;277:50,589–50,596.

    Article  PubMed  CAS  Google Scholar 

  57. Wu G, Krupnick JG, Benovic JL, Lanier SM. Interaction of arrestins with intracellular domains of muscarinic and α2-adrenergic receptors. J Biol Chem 1997;272:17,836–17,842.

    Article  PubMed  CAS  Google Scholar 

  58. DeGraff JL, Gagnon AW, Benovic JL, Orsini MJ. Role of arrestins in endocytosis and signaling of α2-adrenergic receptor subtypes. J Biol Chem 1999;274:11,253–11,259.

    Article  PubMed  CAS  Google Scholar 

  59. DeGraff JL, Gurevich VV, Benovic JL. The third intracellular loop of α2-adrenergic receptors determines subtype specificity of arrestin interaction. J Biol Chem 2002;277:43,247–43,252.

    Article  PubMed  CAS  Google Scholar 

  60. Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell 1995;80:213–223.

    Article  PubMed  CAS  Google Scholar 

  61. Maggio R, Vogel Z, Wess J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc Natl Acad Sci USA 1993;90:3103–3107.

    Article  PubMed  CAS  Google Scholar 

  62. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2001;2:274–286.

    Article  PubMed  CAS  Google Scholar 

  63. Hebert TE, Moffett S, Morello JP, et al. A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 1996;271:16,384–16,392.

    Article  PubMed  CAS  Google Scholar 

  64. Furthmayr H, Marchesi VT. Subunit structure of human erythrocyte glycophorin A. Biochemistry 1976;15:1137–1144.

    Article  PubMed  CAS  Google Scholar 

  65. Vicentic A, Robeva A, Rogge G, Uberti M, Minneman KP. Biochemistry and pharmacology of epitope-tagged α1-adrenergic receptor subtypes. J Pharmacol Exp Ther 2002;302:58–65.

    Article  PubMed  CAS  Google Scholar 

  66. Angers S, Salahpour A, Joly E, et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 2000;97:3684–3689.

    Article  PubMed  CAS  Google Scholar 

  67. Stanasila L, Perez JB, Vogel H, Cotecchia S. Oligomerization of the α1a-and α1b-adrenergic receptor subtypes. Potential implications in receptor internalization. J Biol Chem 2003;278:40,239–40,251.

    Article  PubMed  CAS  Google Scholar 

  68. Carrillo JJ, Pediani J, Milligan G. Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J Biol Chem 2003;278:42,578–42,587.

    Article  PubMed  CAS  Google Scholar 

  69. Xu J, He J, Castleberry AM, Balasubramanian S, Lau AG, Hall RA. Heterodimerization of α2A-and β1-adrenergic receptors. J Biol Chem 2003;278:10,770–10,777.

    Article  PubMed  CAS  Google Scholar 

  70. Uberti MA, Hall RA, Minneman KP. Subtype-specific dimerization of α1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol Pharmacol 2003;64:1379–1390.

    Article  PubMed  CAS  Google Scholar 

  71. Lavoie C, Mercier JF, Salahpour A, et al. α12-Adrenergic receptor heterodimerization regulates β2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem 2002;277:35,402–35,410.

    Article  PubMed  CAS  Google Scholar 

  72. Lavoie C, Hebert TE. Pharmacological characterization of putative β12-adrenergic receptor heterodimers. Can J Physiol Pharmacol 2003;81:186–195.

    Article  PubMed  CAS  Google Scholar 

  73. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. Quantitative assessment of β1-and β2-adrenergic receptor homo-and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 2002;277:44,925–44,931.

    Article  PubMed  CAS  Google Scholar 

  74. Hague C, Chen Z, Pupo AS, Schulte N, Toews ML, Minneman KP. The N-terminus of the human α1D-adrenergic receptor prevents cell surface expression. J Pharm Exp Ther 2004;309:388–397.

    Article  CAS  Google Scholar 

  75. Chalothorn D, McCune DF, Edelmann SE, Garcia-Cazarin ML, Tsujimoto G, Piascik MT. Differences in the cellular localization and agonist-mediated internalization properties of the α1-adrenoceptor subtypes. Mol Pharmacol 2002;61:1008–1016.

    Article  PubMed  CAS  Google Scholar 

  76. Hague C, Uberti M, Chen Z, Hall RA, Minneman KP. Cell surface expression of α1D-ARs is controlled by heterodimerization with α1B-adrenergic receptors. J Biol Chem 2004;279:15,541–15,549.

    Article  PubMed  CAS  Google Scholar 

  77. Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. Oligomerization of opioid receptors with β2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA 2001;98:343–348.

    Article  PubMed  CAS  Google Scholar 

  78. McVey M, Ramsay D, Kellett E, et al. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human δ-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 2001;276:14,092–14,099.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Minneman, K.P. (2006). New Signal Transduction Paradigms. In: Perez, D.M. (eds) The Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1385/1-59259-931-1:087

Download citation

Publish with us

Policies and ethics