Skip to main content

Fluorescence In Situ Hybridization

A Major Milestone in Luminous Cytogenetics

  • Chapter
Molecular Diagnostics

Abstract

The 21st century is witnessing emergence of a new era in medicine called “Genomic Disease Management.” Chromosomes, which house the essential components of this new faculty of medicine, have gained scientific attention since the late 19th century. However, it took nearly 100 yr before the understanding of these vital molecules could be taken to a patient’s bedside. The association of chromosomal abnormalities with congenital malformation disorders and cancer has been suspected since the late 1950s (1–4). In particular, demonstration by these studies of trisomy of one of the smallest chromosomes in Down’s syndrome (chromosome 21, as shown later), monosomy X in Turner’s syndrome, and the chromosomal analysis of leukemias laid foundation for the coming years. It was the development of a variety of staining methods assigning uniqueness to individual chromosomes that really marked the beginning of genomic analysis (for review, see ref. 5). As shown in Table 1, these techniques are collectively known as chromosome banding. A realization that using certain stains like Giemsa and Quinacrine mustards, the AT-rich and GC-rich regions of chromosomes could be distinguished into a unique banding pattern for every chromosome, indeed, invited clinical interest into this fascinating field (6–7). Using a metaphase cell preparation, it became possible to clearly identify chromosomal abnormalities in clinical specimens. The banding techniques underscored the fact that the association of chromosomal abnormalities with disease might not be random or an epiphenomenon. A demonstration of two consistent chromosomal translocations—t(9;22) related to Philadelphia chromosome in chronic myeloid leukemia (CML) and t(15;17) found in acute promyelocytic leukemia (APL)—provided direct testimony for a specificity of chromosomal anomalies in hematological malignancies (4,8,9). Ever since, chromosomal banding became the gold standard for both clinical and basic science studies in cytogenetics. Many authors view the progress of cytogenetics in three phases: (1) the Prebanding era (until 1970), (2) the banding era (1970–1980), and (3) the present-day constantly evolving molecular cytogenetics era (post-1980) (10,11). The roots of this astoundingly progressive molecular phase in the last two decades actually could be seen as early as 1969, when the concept of in situ oligonucleotide hybridization (ISH) was introduced by several groups simultaneously (1214). Albeit, the use of radioisotopic labeling and the autoradiographic visualization method of ISH restricted its general application. Between 1986 and 1988, two major advances illuminated the field of cytogenetics: (1) the development of nonradioactive fluorescent oligonucleotide probe labeling technique and (2) the construction of human-chromosomespecific libraries (1518). During this period, the concept of “interphase cytogenetics” was born, which offered a tremendous technical ease in the ISH protocol and reduced the assay time considerably (17). The fluorescence in situ hybridization (FISH) has since come a long way, metamorphosing from a concurrent detection of several chromosomal abnormalities to the identification of previously uncharacterized abnormalities with multiplex-FISH (M-FISH) or spectral karyotyping (SKY™), further to genomic screening with FISH-based metaphase-comparative genomic hybridization and most recently to the solid-phase genomic DNA arrays (for review, see refs. 11 and 19). The present chapter describes the principles of ISH and FISH and their potential clinical applications and, finally, introduces the seeds of future developments in FISH technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford, C. E., Jacobs, P. A., and Lajtha, L. G. Human somatic chromosomes. Nature (London) 181:1565–1568, 1958.

    Article  CAS  Google Scholar 

  2. Ford, C. E., Jones, K. W., Polani, P. E., Almeida, J. C. D. E., and Briggs, J. H. A sex chromosomal anomaly in a case of gonadal dys-genesis (Turner’s syndrome). Lancet 1:711–713, 1959.

    Article  CAS  PubMed  Google Scholar 

  3. Lejeune, J., Gautier, M., and Turpin, R. Etudes des chromosomes somatiques de neuf enfants mongoliens. C. R. Acad. Sci. 248: 1721–1722, 1959.

    CAS  Google Scholar 

  4. Nowell, P. C. and Hungerford, D. A. A minute chromosome in human chronic granulocytic leukemia. Science 132:1497–1499, 1960.

    Google Scholar 

  5. Comings, D. E. Mechanisms of chromosome banding and implications for chromosome structure. Annu. Rev. Genet. 12:25–46, 1978.

    Article  CAS  PubMed  Google Scholar 

  6. Caspersson, T., Lomakka, G., and Zech, L. The 24 fluorescence patterns of the human metaphase chromosomes-distinguishing characters and variability. Hereditas 67:89–102, 1971.

    Article  Google Scholar 

  7. Chaudhuri, J. P., Vogel, W., Voiculescu, I., and Wolf, U. A simplified method of demonstrating Giemsa-band pattern in human chromosomes. Humangenetik 14:83–84, 1971.

    Article  CAS  PubMed  Google Scholar 

  8. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukemia. Nature 243:290–293, 1973.

    Article  CAS  PubMed  Google Scholar 

  9. Rowley J. D., Golomb, H. M., Vardiman, J., Fukuhara, S., Dougherty, C., and Potter, D. Further evidence for a nonrandom chromosomal abnormality in acute promyelocytic leukemia. Int. J. Cancer 20:869–872, 1977.

    Article  CAS  PubMed  Google Scholar 

  10. Sozzi, G., Testi, M. A., and Croce, C. M. Advances in cancer cyto-genetics. J. Cell. Biochem. 32/33(Suppl.), 173–182. 1999.

    Article  Google Scholar 

  11. Kjeldsen, E. and Kølvaraa, S. FISH technique, FISH probes and their applications in medicine and biology-an overview, in FISH Technology, (Rautenstrauß, B. and Liehr, T., edS.,) Springer-Verlag, Berlin, pp. 3–50, 2002.

    Google Scholar 

  12. Buongiorno-Nardelli, M. and Amaldi, F. Autoradiographic detection of molecular hybrids between rRNA and DNA in tissue sections. Nature 225:946–947, 1969.

    Article  Google Scholar 

  13. Gall, G. and Pardue, M. L. Formation and detection of RNA–DNA hybrid molecules cytological preparations. Proc. Natl. Acad. Sci., USA 63:378–381, 1969.

    Article  CAS  PubMed  Google Scholar 

  14. John, H. L., Birnstiel, M. L., and Jones, K. W. RNA–DNA hybrids at the cytological level. Nature 223: 912–913, 1969.

    Article  Google Scholar 

  15. Pinkel, D., Straume, T., and Gray, J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci, USA 83:2934–2938, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. Deaven, L. L., Van Dilla, M. A., Bartholi, M. F., et al. Construction of human chromosome specific DNA libraries from flow sorted chromosomes. Cold Spring Harb. Symp. Quant. Biol. 51:159–167, 1986.

    CAS  PubMed  Google Scholar 

  17. Cremer, T., Landegent, J., Brückner, A., et al. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum. Genet. 74:346–352, 1986.

    Article  CAS  PubMed  Google Scholar 

  18. Pinkel D., Landegent, J., Collins, C., et al. Fluorescence in situ hybridization with human chromosome specific libraries: detection of trisomy 21 and translocation of chromosome 4. Proc. Natl. Acad. Sci. USA 85:9138–9142, 1988.

    Article  CAS  PubMed  Google Scholar 

  19. Kearney, L. The impact of the new FISH technologies on the cyto-genetics of hematological malignancies. Br. J. Haematol. 104:648– 658, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. McNicol, A. M. and Farquharson, M. A. In situ hybridization and its diagnostic applications in pathology. J. Pathol. 182:250–261, 1997.

    Article  CAS  PubMed  Google Scholar 

  21. Weiss, L. M. and Chen, Y. Y. E ffects of different fixatives on detection of nucleic acids from paraffin-embedded tissues by in situ hybridization using oligonucleotide probes. J. Histochem. Cytochem. 39:1237–1241, 1991.

    CAS  PubMed  Google Scholar 

  22. Karlsen, F., Kalantari, M., Chitemerere, M. Johansson, B., and Hagmar, B. Modifications of human and viral deoxynucleic acid by formaldehyde fixation. Lab. Invest. 71:604–611, 1994.

    CAS  PubMed  Google Scholar 

  23. Basyuk, E., Bertrand, E., and Journot, L. Alkaline fixation drastically improves the signal of in situ hybridization. Nucleic Acids Res. 28:e46, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Abati, A., Sanford, J. S., Fetsch, P., Marincola, F. M., and Wolman, S. R. Fluorescence in situ hybridization (FISH): a user’s guide to optimal preparation of cytologic specimens. Diagn. Cytopathol. 13:486–492, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Oliver, K. R., Heavens, R. P., and Sirinathsinghji, D. J. S. Quantitative comparison of pretreatment regimens used to sensitize in situ hybridization using oligonucleotide probes on paraffin-embedded brain tissues. J. Histochem. Cytochem. 45:1707–1713, 1997.

    CAS  PubMed  Google Scholar 

  26. Henke, R. P. and Ayhan, N. Enhancement of hybridization efficiency in interphase cytogenetics on paraffin-embedded tissue sections by microwave treatment. Anal. Cell P a t hol. 6:319–325, 1994.

    CAS  Google Scholar 

  27. Qian, X., Bauer, R. A., Xu, H. S., and Lloyd, R.V. In situ hybridization detection of calcitonin mRNA in routinely fixed, paraffin-embdded tissue sections: a comparison of different types of probes combined with tyramide signal amplification. Appl. Immunohistochem. Mol. Morphol. 9:61–69, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. McQuaid, S., McMahon, J., and Allan, G. M. A comparison of digoxigenin and biotin labeled DNA and RNA probes for in situ hybridization. Biotech. Histochem. 70:147–154, 1995.

    Article  CAS  PubMed  Google Scholar 

  29. Komminoth, P., Merk, F. B., Leav, I., Wolfe, H. J., and Roth, J. Comparison of 35S- and digoxigenin-labeled RNA and oligonu-cleotide probes for in situ hybridization: expression of mRNA of the seminal vesicle protein II and androgen receptor genes in the rat prostate. Histochemistry 98:217–228, 1992.

    Article  CAS  PubMed  Google Scholar 

  30. Brousset, P., Butet, V., Chittal, S., Selves, J., and Delsol, G. Comparison of in situ hybridization using different nonisotopic probes for detection of Epstein-Barr virus in nasopharyngeal carcinoma and immunohistochemical correlation with anti-latent membrane protein antibody. Lab. Invest. 67:457–464, 1992.

    CAS  PubMed  Google Scholar 

  31. Höfler, H. Principles of in situ hybridization, in (In Situ) Hybridization: Principles and Practice, Polak, J. M. and McGee, J.O’D., eds.) Oxford University Press, Oxford, pp. 15–30, 1990.

    Google Scholar 

  32. van Stedum, S. and King, W. Basic FISH techniques and troubleshooting. Methods Mol. Biol. 204:51–63, 2002.

    PubMed  Google Scholar 

  33. Werner, M., Wilkens, L., Aubele, M., Nolte, M., Zitzelsberger, H., and Komminoth, P. Interphase cytogenetics in pathology: principles, methods, and applications of fluorescence in situ hybridization (FISH). Histochem. Cell Biol. 108:381–390, 1997.

    Article  CAS  PubMed  Google Scholar 

  34. Rigolin, G. M., Howard, J., Buggins, A., et al. Phenotypic and functional characteristics of monocyte-derived dendritic cells from patients with myelodysplastic syndromes. Br. J. Haematol. 107:844–850, 1999.

    Article  Google Scholar 

  35. Bigoni, R., Cuneo, A., Milani, R., et al. Multilineage involvement in the 5q- syndrome: a fluorescent in situ hybridization study on bone marrow smears. Hematologica 86:375–381, 2001.

    CAS  Google Scholar 

  36. Wolfe, K. Q. and Herrington, C. S. Interphase cytogenetics and pathology: a tool for diagnosis and research. J. Pathol. 181: 359–361, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Dewald, G. W. Interphase FISH studies of chronic myeloid leukemia. Methods Mol. Biol. 204:311–342, 2002.

    CAS  PubMed  Google Scholar 

  38. Tönnies, H. Modern molecular cytogenetics techniques in genetic diagnostics. Trends Mol. Med. 8:246–250, 2002.

    Article  PubMed  Google Scholar 

  39. Lawce, H., Durum, C., Unsworth, N., Olson, S., and Magenis, R. E. BCR-ABL FISH: probes, patterns and prognoses. J. Assoc. Genet. Tech. 28:40–46, 2002.

    Google Scholar 

  40. Wang, S., Saboorian, M. H., Frenkel, E. P., et al. Aneusomy 17 in breast cancer: its role in HER2/neu protein expression and implication for clinical assessment of HER2/neu status. Mod. Pathol. 15:137–145, 2002.

    Article  PubMed  Google Scholar 

  41. McCormick S. R., Lillemoe, T. J., Beneke, J., Schrauth, J., and Reinartz, J. HER2 assessment by immunohistochemical analysis and fluorescence in situ hybridization. Anat. Pathol. 117:935–943, 2002.

    CAS  Google Scholar 

  42. Jalal, S. M., Law, M. E., Christensen, E. R., Spurbeck, J. L., and Dewald, G. W. Method for sequential staining of GTL-banded metaphases with fluorescent-labeled chromosome specific paint probes. Am. J. Med. Genet. 46:98–103, 1993.

    Article  CAS  PubMed  Google Scholar 

  43. Speicher, M. R., Ballard, S. G., and Ward, D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12:368–375, 1996.

    Article  CAS  PubMed  Google Scholar 

  44. Schröck, E., du Manior, S. Veldman, T., et al. Multicolor spectral karyotyping of human chromosomes. Science 273:494–497, 1996.

    Article  PubMed  Google Scholar 

  45. Tanke, H.J., Wiegant, J., van Gijlswijk, R.P., et al. New strategy for multi-colour fluorescence in situ hybridization: COBRA: combined binary ratio labeling. Eur. J. Hum. Genet. 7:2–11, 1999.

    Article  CAS  PubMed  Google Scholar 

  46. Barbouti, A., Johansson, B., Hoglund, M., et al. Multicolor COBRA-FISH analysis of chronic myeloid leukemia reveals novel cryptic balanced translocations during disease progression. Genes Chromosomes Cancer 35:127–137, 2002.

    Article  CAS  PubMed  Google Scholar 

  47. Zitzelsberger, H., Lehman, L., Werner, M., and Bauchinger, M. Comparative genomic hybridization for the analysis of chromosomal imbalances in solid tumors and haematological malignancies. Histochem. Cell Biol. 108:403–417, 1997.

    Article  CAS  PubMed  Google Scholar 

  48. Caburet, S., Conti, C., and Bensimon, A. Combing the genome for genomic instability. Trends Biotech. 20:344–350, 2002.

    Article  CAS  Google Scholar 

  49. Saracoglu, K., Brown, J., Kearney, L., et al. New concepts to improve resolution and sensitivity of molecular cytogenetics diagnostics by multicolor fluorescence in situ hybrodization. Cytometry 44:7–15, 2001.

    Article  CAS  PubMed  Google Scholar 

  50. Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407, 1997.

    Article  CAS  PubMed  Google Scholar 

  51. Snijders A. M., Nowak, N., Segraves, R., et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat. Genet. 29:263–264, 2001.

    Article  CAS  PubMed  Google Scholar 

  52. Rapp, A.K., Florijn, R.J., Blonden, L.A.J., et al. Fiber FISH as a DNA mapping tool. Methods 9:67–73, 1996.

    Article  Google Scholar 

  53. Heng, H. H. Q. and Tsui, L. C. High resolution free chromatin/DNA fiber fluorescent in situ hybridization. J. Chromatogr. 806:219–229, 1998.

    Article  CAS  Google Scholar 

  54. Komminoth, P. and Werner, M. Target and signal amplification: approaches to increase the sensitivity of in situ hybridization. Histochem. Cell Biol. 108:325–333, 1997.

    CAS  Google Scholar 

  55. Koch, J., Mogensen, J., Pedersen, S., et al. Fast one-step procedure for the detection of nucleic acids in situ by primer-induced sequence-specific labeling with fluorescein-12-dUTP. Cytogenet. Cell Genet. 60:1–3, 1992.

    Article  CAS  PubMed  Google Scholar 

  56. Haase, A. T., Retzel, E. F., and Staskus, K. A. Amplification and detection of lentiviral DNA inside cells. Proc. Natl. Acad. Sci., USA 87:4971–4975, 1990.

    Article  CAS  PubMed  Google Scholar 

  57. Bobrow, M. N., Harris, T. D., Shaughnessy, K. J., and Litt, G. J. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassay. J. Immunol. Methods 125:279–285, 1989.

    Article  CAS  PubMed  Google Scholar 

  58. van Gijlswijk, R. P. M., Zijlmans, H. J. M. A. A., Wiegant, J., et al. Fluorochrome-labeled tyramides: use in immunohistochemitry and fluorescence in situ hybridization. J. Histochem. Cytochem. 45:375–382, 1997.

    PubMed  Google Scholar 

  59. van de Corput, M. P. C., Dirks, R. W., et al. Sensitive mRNA detc-tion by fluorescence in situ hybridization using horseradish peroxi-dase-labeled oligodeoxynucelotides and tyramide signal amplification. J. Histochem. Cytochem. 46:1249–1259, 1998.

    PubMed  Google Scholar 

  60. Speel, E. J. M., Ramaekers, F. C. S., and Hopman, A. H. N. Sensitive multicolor fluorescence in situ hybridization using catalyzed reporter deposition (CARD) amplification. J. Histochem. Cytochem. 45:1439–1446, 1997.

    CAS  PubMed  Google Scholar 

  61. Stumm, M., Tönnies, H. and Wieacker, P. F. Molecular cytogenet-ics techniques for the diagnosis of chromosomal abnormalities in childhood disease. Eur. J. Pediatr. 158:531–536, 1999.

    Article  CAS  PubMed  Google Scholar 

  62. Johansson, B., Mertens, F., and Mitelman, F. Primary vs. secondary neoplasia-associated chromosomal abnormalities—balanced rearrangements vs. genomic imbalances? Genes Chromosomes Cancer 16:155–163, 1996.

    Article  CAS  PubMed  Google Scholar 

  63. Mitelman, F. Recurrent chromosome aberrations in cancer. Mutat. Res. 462:247–253, 2000.

    Article  CAS  PubMed  Google Scholar 

  64. Slupianek, A., Hoser, G., Majsterek, I., et al. Fusion tyrosine kianses induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G2/M phase, and protection from apoptosis. Mol. Cell. Biol. 22:4189–4201, 2002.

    Article  CAS  PubMed  Google Scholar 

  65. Grimwade, D. and Coco, F. L. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 16:1959–1973, 2002.

    Article  CAS  PubMed  Google Scholar 

  66. Wessels, P. H., Hopman, A. H. N., Ummelen, M. I.J., Krijne-Kubat, B., Ramaekers, F. C. S. and T w ijnstra, A. Differentiation between reactive gliosis and diffuse astrocytoma by in situ hybridization. Neurology 56:1224–1227, 2001.

    CAS  PubMed  Google Scholar 

  67. Padua R. A., McGlynn, A., and McGlynn, H. Molecular, cytogenetics and genetic abnormalities in MDS and secondary AML, in Myelodysplastic Syndromes and Secondary Acute Myelogenous Leukemia, Raza, A. and Mundle, S., eds., Kluwer, Boston, pp. 111–158, 2001.

    Google Scholar 

  68. Greenberg, P. L., Cox, C., LeBeau, M. M., et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088, 1997.

    CAS  PubMed  Google Scholar 

  69. Fonseca, R., Blood, E., Rue, M., et al. Clinical and biological implications of recurrent genomic aberrations in myeloma. Blood. 101:4569–4575, 2003.

    Article  CAS  PubMed  Google Scholar 

  70. Masood, S. and Bui, M. M. Prognostic and predictive value of HER2/neu oncogene in breast cancer. Microsc. Res. Tech. 59:102–108, 2002.

    Article  CAS  PubMed  Google Scholar 

  71. Carlomagno, C., Perrone, F., Gallo, C., et al. c-erb B2 overexpres-sion decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J.Clin. Oncol. 14:2702–2708, 1996.

    CAS  PubMed  Google Scholar 

  72. Bianco, A.R., De Laurentiis, M., Carlomagno, C.,et al. 20 year update of the Naples GUN trial of adjuvant breast cancer. Proc. Am. Soc. Clin. Oncol. 17 373, 1998.

    Google Scholar 

  73. Slamon, D., Leyland-Jones, B., Shak, S., et al. Addition of Herceptin (humanized anti-HER-2 antibody) to first line chemotherapy for HER2 overexpressing metastatic breast cancer markedly increases anticancer activity: A randomized multinational controlled Phase III trial. Proc. Am. Soc. Clin. Oncol. 17:377, 1998.

    Google Scholar 

  74. Sarosdy, M. F., Schellhammer, P., Bokinsky, G.,et al. Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J. Urol. 168:1950–1954, 2002.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, Y. L., Bagg, A., Pear, W., Nowell, P. C., and Hess, J. L. Chronic myelogenous leukemia: laboratory diagnosis and monitoring. Genes Chromosomes Cancer 32:97–111, 2001.

    Article  CAS  PubMed  Google Scholar 

  76. Kantarjian, H. M., Smith, T. L., O’Brien, S., Beran, M., Pierce, S., and Talpaz, M. Prolonged survival in chronic myelogenous leukemia after cytogenetics response to interferon-alpha therapy. The leukemia service. Ann. Intern. Med. 122:254–261, 1995.

    CAS  PubMed  Google Scholar 

  77. Druker, B. J., Talpaz, M., Resta, D., et al. Clinical efficacy and safety of an ABL specific tyrosine kinase inhibitor as targeted therapy for chronic myelogenous leukemia. Blood 94(Suppl.), 368a, 1999.

    Google Scholar 

  78. Tanaka, K., Arif, M., Eguchi, M., et al. Interphase fluorescence in situ hybridization overcomes pitfalls of G-banding analysis with special reference to underestimation of chromosomal aberration rates. Cancer Gene. Cytogenet. 115:32–38, 1999.

    Article  CAS  Google Scholar 

  79. Manicini, M., Nani, M., Cedrone, M.,et al. Combined cytogenetics, FISH and molecular analysis in acute promyelocytic leukemia at diagnosis and complete remission. Br. J. Haematol. 91:878–884, 1995.

    Article  Google Scholar 

  80. Knuutila, S., Elonen, E., Teerenhovi, L., et al. Trisomy 12 in B cells of patients of B-cell chronic lymphocytic leukemia. N. Engl. J. Med. 314:865–869, 1996.

    Article  Google Scholar 

  81. Grimwade, I. S., Chase, D., Goldstone, A., Burnett, A. H., Goldman, A. K., and Swirsky, J. M. Identification of PML/RAR alpha rearrangements in suspected acute promyelocytic leukemia (APL) using in situ hybridization on bone amrrow smears: a comparison of cytogenetics with RT-PCR in MRC ATRA trial patients. Br. J. Haematol. 101(suppl.):35, 1998.

    Google Scholar 

  82. McNicol, A. M., Farquharson, M. A., Lee, F. D., and Foulis, A. K. Comparison of in situ hybridization and polymerase chain reaction in diagnosis of B cell lymphoma. J. Clin. Pathol. 51:229–233, 1998.

    Article  CAS  PubMed  Google Scholar 

  83. Belaud-Rotureau, M. A., Parrens, M., Dubus, P., Garroste, J. C., de Mascarel, A., and Merlino, J. P. A comparative analysis of FISH, RT-PCR, PCR and immunohistochemistry for the diagnosis of mantle cell lymphomas. Mod. Pathol. 15:517–525, 2002.

    Article  PubMed  Google Scholar 

  84. Gleißner, B., Rieder, H., Thiel, E., et al. Prospective BCR-ABL, analysis by polymerase chain reaction (RT-PCR) in adult acute B-lineage lymphoblastic leulemia: reliability of RT-nested PCR and comparison to cytogenetics data. Leukemia 15:1834–1840, 2001.

    PubMed  Google Scholar 

  85. Kim, Y. J., Kim, D. W., Lee, S., et al. Comprehensive comparison of FISH, RT-PCR, and R-QPCR for monitoring the BCR-ABL gene after hematopoietic stem cell transplantation in CML. Eur. J. Haematol. 68:272–280, 2002.

    Article  CAS  PubMed  Google Scholar 

  86. Gladstone, B., Sivaraman, S., Venugopal, P., et al. Measurement of telomerase activity in cytogenetically marked AML cells could be useful in determining response to therapy. Blood 98:2439, 2001.

    Google Scholar 

  87. Ambre-Kadam, P. S., Baisane, C., Saikia, T., Nair, R., Gawade, H., and Advani, S. Fluorescence in situ hybridization: a highly efficient technique of molecular diagnosis and prediction for disease course in patients with myeloid leukemias. Cancer Genet. Cytogenet. 131:125–134, 2001.

    Article  Google Scholar 

  88. Nilsson M., Krjeci, K., Koch, J., Kwaitkowski, M., Gustavson, P. and Landegren, U. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21 Nat. Genet. 16:252–255, 1997

    Article  CAS  PubMed  Google Scholar 

  89. Varella-Garcia, M. Molecular cytogenetics in solid tumors: labora-torial tool for diagnosis, prognosis and therapy. Oncologist 8:45–58, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mundle, S.D., Koska, R.J. (2006). Fluorescence In Situ Hybridization. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Humana Press. https://doi.org/10.1385/1-59259-928-1:189

Download citation

  • DOI: https://doi.org/10.1385/1-59259-928-1:189

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-356-5

  • Online ISBN: 978-1-59259-928-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics