Skip to main content

Alternative Methods for Amplified Nucleic Acid Testing

  • Chapter
Molecular Diagnostics

Abstract

Molecular pathology is a relatively new division of laboratory medicine that detects, characterizes, and/or quantifies nucleic acids to assist in the diagnosis of human disease. Molecular assays augment classical areas of laboratory medicine by pro– viding additional diagnostic data either in a more expeditious manner or by providing results that would not be obtainable using standard methodologies. For these reasons, molecular pathology is the most rapidly growing area in laboratory medi– cine. Molecular pathology can be categorized into five subdivi– sions that specialize in the diagnosis of diseases or conditions associated with (1) hematology/oncology, (2) solid tumors, (3) genetics, (4) pharmacogenetics, and (5) infectious diseases. Based on test volume, detection, and characterization of infec– tious diseases is currently the dominant subdivision of molecu– lar pathology and is projected to continue to dominate the other areas of molecular pathology for the next several years. Molecular methods used for detecting infectious agents have several advantages when compared to classical microbiology approaches. Molecular methods are highly sensitive and, there– fore, can detect minute amounts of infectious agents. Because these methods generally do not require growth in culture media, various bacteria, viruses, and fungi, which are difficult or impossible to culture, can be readily identified (1–8). In addition, the sensitivity of these methods can allow the analysis of nonviable infectious agents (i.e., permitting the analysis of archived formalin-fixed tissue). The viral load and genotype of certain infectious agents that can facilitate treatment protocols can also be determined. These advantages are some of the rea– sons why infectious diseases are dominating the area of Clinical Molecular Pathology. As a result, these new molecular method– ologies have placed the highest priority on the ability to equally detect and quantify genetic variants of various infectious agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oksi, J., et al. Erythema migrans—influence of posture. Case report. APMIS 108:649–650, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Coleme-Grimmer, M. I., et al. Borrelia burgdorferi and Borrelia hermsii DNA are not associated with morphea or lichen sclerosus and atrophicus in the southwestern. Arch. Dermatol. 133:1174, 1997.

    Article  Google Scholar 

  3. Burdick, A. E., et al. Hansen’s disease in a patient with a history of sarcoidosis. Int. J. Lepr. Other Mycobact. Dis. 68:307–311, 2000.

    CAS  PubMed  Google Scholar 

  4. Donoghue, H. D., et al. PCR primers that can detect low levels of Mycobacterium leprae DNA. J. Med. Microbiol. 50:177–182, 2001.

    CAS  PubMed  Google Scholar 

  5. Soini, H. M. J. Molecular diagnosis of mycobacteria. Clin. Chem. 47:809–814, 2001.

    CAS  PubMed  Google Scholar 

  6. Yen, A. R. P., Cortes-Franco, R., and Tyring, S. K. Detection of Mycobacterium tuberculosis in erythema induratum of Bazin using polymerase chain reaction. Arch. Dermatol. 133:532–533, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Abalos, F. M., et al. Mycobacterium ulcerans infection (Buruli ulcer): a case report of the disseminated nonulcerative form. Ann. Diagn. Pathol. 4:386–390, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Yamanaka, K., et al. Severe dissseminated BCG infection in an 8 year old girl. Nagoya J. Med. Sci. 63:123–128, 2000.

    CAS  PubMed  Google Scholar 

  9. Dean, F. B., et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99(8):5261–5266, 2002.

    Article  CAS  PubMed  Google Scholar 

  10. de Barbeyrac, B., et al. Detection of Chlamydia trachomatis in symptomatic and asymptomatic populations with urogenital specimens by AMP CT (Gen-probe incorporated) compared to others commercially available amplification assays. Diagn. Microbiol. Infect. Dis. 37(3):181–185, 2000.

    Article  PubMed  Google Scholar 

  11. Linnen, J. M., et al. Sensitive detection of genetic variants of HIV- 1 and HCV with an HIV-1/HCV assay based on transcription- mediated amplification. J. Virol. Methods 102(12):139–155, 2002.

    Article  CAS  PubMed  Google Scholar 

  12. Akduman, D., et al. Evaluation of a strand displacement amplification assay (BD ProbeTec-SDA) for detection of Neisseria gonorrhoeae in urine specimens. J. Clin. Microbiol. 40(1):281–283, 2002.

    Article  CAS  PubMed  Google Scholar 

  13. Barrett, A., Magee, J. G., and Freeman, R. An evaluation of the BD ProbeTec ET system for the direct detection of Mycobacterium tuberculosis in respiratory samples. J. Med. Microbiol. 51(10):895–898, 2002.

    CAS  PubMed  Google Scholar 

  14. Walter, N. G. and Strunk, G. Strand displacement amplification as an in vitro model for rolling-circle replication: deletion formation and evolution during serial transfer. Proc. Natl. Acad. Sci. USA 91(17):7937–7941, 1994.

    Article  CAS  PubMed  Google Scholar 

  15. Baner, J., et al. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 26(22):5073–5078, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Christian, A. T., et al. Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells. Proc. Natl. Acad. Sci. USA 98(25):14238–14243, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Demidov, V. V. Rolling-circle amplification in DNA diagnostics: the power of simplicity. Expert Rev. Mol. Diagn. 2(6):542–548, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Faruqi, A. F., et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2(1):4, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Hatch, A., et al. Rolling circle amplification of DNA immobilized on solid surfaces and its application to multiplex mutation detection. Genet. Anal. 15(2):35–40, 1999.

    CAS  PubMed  Google Scholar 

  20. Lizardi, P. M., et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19(3):225–232, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Nallur, G., et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res. 29(23):E118, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Qi, X., et al. L–RCA (ligation–rolling circle amplification): a gen- eral method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res. 29(22):E116, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Rosler, A., et al. Rolling circle amplification for scoring single nucleotide polymorphisms. Nucleosides Nucleotides Nucleic Acids 20(4–7):893–894, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas, D. C., Nardone, G. A., and Randall S. K. Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction. Arch. Pathol. Lab. Med. 123(12):1170–1176, 1999.

    CAS  PubMed  Google Scholar 

  25. Wu, H. C., et al. DNA sequencing using rolling circle amplification and precision glass syringes in a high-throughput liquid handling system. Biotechniques 34(1):204–207, 2003.

    CAS  PubMed  Google Scholar 

  26. van Doornum, G. J., et al. Comparison between the LCx Probe system and the COBAS AMPLICOR system for detection of Chlamydia tra- chomatis and Neisseria gonorrhoeae infections in patients attending a clinic for treatment of sexually transmitted diseases in Amsterdam, The Netherlands. J. Clin. Microbiol. 39(3):829– 835, 2001.

    Article  PubMed  Google Scholar 

  27. Winter, A. J., et al. Comparison of a ligase chain reaction-based assay and cell culture for detection of pharyngeal carriage of Chlamydia trachomatis. J. Clin. Microbiol. 38(9):3502–3504, 2000.

    CAS  PubMed  Google Scholar 

  28. Reyes, A. A., et al. Linked Linear amplification (LLA): a new method for the amplification of DNA. Clin. Chem. 47:31–40, 2001.

    CAS  PubMed  Google Scholar 

  29. Manos, M. M., et al. Identifying women with cervical neoplasia. JAMA 281:1605–1647, 1999.

    Article  CAS  PubMed  Google Scholar 

  30. Cullen, A. P., et al. Rapid detection and typing of herpes simplex DNA in clinical specimens by the hybrid capture II signal amplification probe test. J. Clin. Micro. biol. 35:2275–2278, 1997.

    CAS  Google Scholar 

  31. Hong, I. S., et al. Comparative analysis of a liquid-based Pap test and concurrent HPV DNA assay of residual samples. A study of 608 cases. Acta. Cytol. 46(5):828–834, 2002.

    PubMed  Google Scholar 

  32. Khanna, N., et al. Human papillomavirus absence predicts normal cervical histopathologic findings with abnormal papanicolaou smears: a study of a university-based inner city population. J. Hum. Virol. 4(5):283–287, 2001.

    CAS  PubMed  Google Scholar 

  33. Boggino, H., et al. A quantitative probe method for the detection of Parvovirus DNA. J. Clin. Lab. Analy. 14(1):38–41, 2000.

    Article  CAS  Google Scholar 

  34. Gleaves, C. A., et al. Multicenter evaluation of the Bayer VER– SANT HIV-1 RNA 3.0 assay: analytical and clinical performance. J. Clin. Virol. 25(2):205–216, 2002.

    Article  CAS  PubMed  Google Scholar 

  35. Trimoulet, P., et al. Evaluation of the VERSANT HCV RNA 3.0 assay for quantification of hepatitis C virus RNA in serum. J. Clin. Microbiol. 40(6):2031–2036, 2002.

    Article  CAS  PubMed  Google Scholar 

  36. Parekh, B., et al. Impact of HIV type 1 subtype variation on Viral RNA quantitation. Aids research and human retroviruses. 15(2):33–142, 1999.

    Article  Google Scholar 

  37. Evans, M. F., et al. Biotinyl-tyramide-based in situ hybridization signal patterns distinguish human papillomavirus type and grade of cervical intraepithelial neoplasia. Mod. Pathol. 15(12):339–347, 2002.

    Article  Google Scholar 

  38. Kenny, D., Shen, L. P., and Kolberg, J.A. Detection of viral infec– tion and gene expression in clinical tissue specimens using branched DNA (bDNA) in situ hybridization. J. Histochem. Cytochem. 50(9):1219–1227, 2002.

    CAS  PubMed  Google Scholar 

  39. Van Tine, B. A., et al. In situ analysis of the transcriptional activity of integrated viral DNA using tyramide–FISH. Dev. Biol. (Basel) 106:381–385, 2001.

    Google Scholar 

  40. Ishihara, S., et al. Hypersensitivity in mosquito bites is not an allergic disease but an Epstein Barr virus associated lymphoproliferative disease. Int. J. Hematol. 72:223–228, 2000.

    CAS  PubMed  Google Scholar 

  41. Abe, Y., et al. Subcutaneous panniculitis by Epstein Barr virus infected natural killer (NK) cell proliferation terminating in aggressive subcutaneous NK cell lymphoma. Am. J. Hematol. 64(3): 221–225, 2000.

    Article  CAS  PubMed  Google Scholar 

  42. Payne, D. A., et al. Coexistance of Molluscum contagiosum with HPV in the same lesion. J. Am. Acad. Dermatol. 36(4):641–644, 1997.

    Article  CAS  PubMed  Google Scholar 

  43. Nevilie, M., et al. Characterization of cytochrome P450 2D6 alleles using the Invader system. Biotechniques Suppl:34–43, 2002.

    Google Scholar 

  44. Evans, J. G., and Lee-Tataseo, C. Determination of the factor V Leiden single-nucleotide polymorphism in a commercial clinical laboratory by use of NanoChip microelectronic array technology. Clin. Chem. 48(9):1406–1411, 2002.

    CAS  PubMed  Google Scholar 

  45. Zhang, W., et al. Detection of Chlamydia trachomatis by isothermal ramification amplification method: a feasibility study. J. Clin. Microbiol. 40(1):128–132, 2002.

    Article  CAS  PubMed  Google Scholar 

  46. Lazar, J. G., et al. Hybrid capture: a sensitive signal amplification based chemiluminescence test for the detection and quantification of human viral and bacterial pathogens. J. Clin. Ligand Assay 22:139–151, 1999.

    Google Scholar 

  47. Tang, Y. W., et al. Identification of coryneform bacterial isolates by ribosomal DNA sequences. J. Clin. Microbiol. 38(4):1676–1678, 2000.

    CAS  PubMed  Google Scholar 

  48. Patel, J. B., et al.Sequence based identification of Mycobacterium species using the Microseq rDNA bacterial identification system. J. Clin. Microbiol. 38(1):246–251, 2000.

    CAS  PubMed  Google Scholar 

  49. Lundberg, F., et al. External ventricular drainage catheters: effect of surface heparinization on bacterial colonization and infection. Acta Neurochir. 142:1377–1383, 2000.

    Article  CAS  Google Scholar 

  50. Jackson, C. J., et al. Strain identification of Trichophyton rubrum by specific amplification of subrepeat elements in ther ribosomal DNA nontranscribed spacer. J. Clin. Microbiol. 38(12): 4527–4534, 2000.

    CAS  PubMed  Google Scholar 

  51. Buzina, W., et al. Development of molecular methods for identification of Schizophyllum commune form clinical samples. J. Clin. Microbiol. 39(7):2391–2396, 2001.

    Article  CAS  PubMed  Google Scholar 

  52. Kurzai, O., et al. Molecular and phenotypic identification of the yeast pathogen Candida dubliniensis. J. Mol. Med. 78(9):521–529, 2000.

    Article  CAS  PubMed  Google Scholar 

  53. Martin, C., et al. Development of a PCR based line probe assay for identification of fungal pathogens. J. Clin. Microbiol. 38(10):3735– 3742, 2000.

    CAS  PubMed  Google Scholar 

  54. Manos, M. M., et al.The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7:209–214, 1989.

    CAS  Google Scholar 

  55. Kempf, W., et al. Lymphomatoid papulosis and human her- pesviruses—a PCR based evaluation for the presence of human herpesvirus 6, 7, 8 and related herpesviruses. J Cutan. Pathol. 28: 29–33, 2001.

    Article  CAS  PubMed  Google Scholar 

  56. Bezold, G., et al. Detection of herpes simplex virus and varicella- zoster virus in clinical swabs: frequent inhibition of PCR as determined by internal controls. Mol. Diagn. 5:279–284, 2000.

    CAS  PubMed  Google Scholar 

  57. Stage, T. K., Hertel, K. J., and Uhlenbeck, O. C. Inhibition of the hammerhead ribozyme by neomycin. RNA 1(1):95–101, 1995.

    CAS  PubMed  Google Scholar 

  58. Jenne, A., et al. Rapid identification and characterization of hammerhead-ribozyme inhibitors using fluorescence-based technology. Nat. Biotechnol. 19(1):56–61, 2001.

    Article  CAS  PubMed  Google Scholar 

  59. Payne D, et al. Increased buffer pH enhances sensitivity and specificity of human papillomavirus detection using consensus primer based PCR. J. Virol. Methods 52:105–110, 1995.

    Article  CAS  PubMed  Google Scholar 

  60. Yang, S., et al. Development of a rapid detection assay for bacterial identification and speciation. Acad. Emerg. Med. 8:494, 2001.

    Google Scholar 

  61. Schweitzer, B., et al. Combining nucleic acid amplification and detection. Curr. Opin. Biotechno. 12:21–27, 2001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Payne, D.A., Sower, L.E. (2006). Alternative Methods for Amplified Nucleic Acid Testing. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Humana Press. https://doi.org/10.1385/1-59259-928-1:075

Download citation

  • DOI: https://doi.org/10.1385/1-59259-928-1:075

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-356-5

  • Online ISBN: 978-1-59259-928-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics