Skip to main content

Repair and Defense Systems at the Epithelial Surface in the Lung

  • Chapter
Integrative Physiology in the Proteomics and Post-Genomics Age
  • 557 Accesses

Abstract

The vast majority of infectious agents enter the body through the mucosal surfaces, such as those of the lung and intestine. These surfaces are covered by an epithelium that forms the interface between the external environment and the internal milieu. The epithelium is an essential physical barrier between the potentially hostile outside world and the host, but is also actively involved in processes like infection, inflammation, and immunity. The epithelium is therefore considered an important component of the host defense system. Epithelial layers are frequently injured because they are exposed to environmental toxic agents such as chemicals and micro-organisms, and to mechanical injury. To prevent invasion of the underlying tissue by pathogens and toxic agents, this epithelial injury must be followed by a rapid repair response. This chapter focuses on the interplay between this epithelial repair and the host defense system at the epithelial surface, two mechanisms that appear to act in concert to protect the host from infection. Whereas many of the principle mechanisms that operate in the diverse epithelia display marked similarities, some characteristics are typical for one type of epithelium. This chapter focuses on the pulmonary epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corrin, B. (2000) Normal lung structure, In Pathology of the lungs (Corrin, B., ed), Churchill Livingstone, London, pp. 1–34.

    Google Scholar 

  2. Danel, C. J. (1996) Morphological characteristics of human airway structures: diversity and unity, in Environmental impact on the airways. From injury to repair (Chretien, J. and Dusser, D., eds), Marcel Dekker, New York, pp. 19–42.

    Google Scholar 

  3. Crapo, J. D., Barry, B. E., Gehr, P., Bachofen, M. and Weibel, E. R. (1982) Cell number and cell characteristics of the normal human lung. Am. Rev. Resp. Dis. 126:332–337.

    PubMed  CAS  Google Scholar 

  4. Bals, R. and Hiemstra, P. S. (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur. Respir. J. 23:327–333.

    Article  PubMed  CAS  Google Scholar 

  5. Ganz, T. (2004) Antimicrobial polypeptides. J. Leukoc. Biol. 75:34–38.

    Article  PubMed  CAS  Google Scholar 

  6. Message, S. D. and Johnston, S. L. (2004) Host defense function of the airway epithelium in health and disease: clinical background. J. Leukoc. Biol. 75:5–17.

    Article  PubMed  CAS  Google Scholar 

  7. Takeda, K., Kaisho, T. and Akira, S. (2003) Toll-like receptors. Annu. Rev. Immunol. 21: 335–376.

    Article  PubMed  CAS  Google Scholar 

  8. Poltorak, A., He, X., Smirnova, I., andet al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  9. Agnese, D. M., Calvano, J. E., Hahm, S. J., andet al. (2002) Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J. Infect. Dis. 186: 1522–1525.

    Article  PubMed  CAS  Google Scholar 

  10. Wanner, A., Salathe, M. and O’Riordan, T. G. (1996) Mucociliary clearance in the airways. Am. J. Respir. Crit Care Med. 154:1868–1902.

    PubMed  CAS  Google Scholar 

  11. Sleigh, M. A., Blake, J. R. and Liron, N. (1988) The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 137:726–741.

    PubMed  CAS  Google Scholar 

  12. Boucher, R. C. (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur. Respir. J 23:146–158.

    Article  PubMed  CAS  Google Scholar 

  13. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395.

    Article  PubMed  CAS  Google Scholar 

  14. Sallenave, J. M. (2000) The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease) as alarm antiproteinases in inflammatory lung disease. Respir. Res. 1:87–92.

    Article  PubMed  CAS  Google Scholar 

  15. Ganz, T. (2003) Defensins: Antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3: 710–720.

    Article  CAS  Google Scholar 

  16. Schutte, B. C. and McCray, P. B., Jr. (2002) [beta]-defensins in lung host defense. Annu. Rev. Physiol 64:709–748.

    Article  PubMed  CAS  Google Scholar 

  17. Schutte, B. C., Mitros, J. P., Bartlett, J. A.,et al. (2002) Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc. Natl. Acad. Sci. U. S. A 99:2129–2133.

    Article  PubMed  CAS  Google Scholar 

  18. Kao, C. Y., Chen, Y., Zhao, Y. H. and Wu, R. (2003) ORFeome-Based Search of Airway Epithelial Cell-Specific Novel Human β-Defensin Genes. Am. J. Resp. Cell Mol. Biol. 29:71–80.

    Article  CAS  Google Scholar 

  19. Moser, C., Weiner, D. J., Lysenko, E., Bals, R., Weiser, J. N. and Wilson, J. M. (2002) beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70:3068–3072.

    Article  PubMed  CAS  Google Scholar 

  20. Zanetti, M. (2004) Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75:39–48.

    Article  PubMed  CAS  Google Scholar 

  21. Bals, R., Weiner, D. J., Meegalla, R. L. and Wilson, J. M. (1999) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J. Clin. Invest 103:1113–1117.

    PubMed  CAS  Google Scholar 

  22. Nizet, V., Ohtake, T., Lauth, X., Trowbridge, J.,et al. (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457.

    Article  PubMed  CAS  Google Scholar 

  23. Hertz, C. J., Wu, Q., Porter, E. M.,et al. (2003) Activation of toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J. Immunol. 171:6820–6826.

    PubMed  CAS  Google Scholar 

  24. Liu, L., Roberts, A. A. and Ganz, T. (2003) By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J. Immunol. 170:575–580.

    PubMed  CAS  Google Scholar 

  25. Tsutsumi-Ishii, Y. and Nagaoka, I. (2003) Modulation of human beta-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J. Immunol. 170:4226–4236.

    PubMed  CAS  Google Scholar 

  26. Akinbi, H. T., Epaud, R., Bhatt, H. and Weaver, T. E. (2000) Bacterial killing is enhanced by expression of lysozyme in the lungs of transgenic mice. J. Immunol. 165:5760–5766.

    PubMed  CAS  Google Scholar 

  27. Singh, P. K., Parsek, M. R., Greenberg, E. P. and Welsh, M. J. (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555.

    Article  PubMed  CAS  Google Scholar 

  28. Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999) Bacterial Biofilms: A Common Cause of Persistent Infections. Science 284:1318.

    Article  PubMed  CAS  Google Scholar 

  29. Hiemstra, P. S., Maassen, R. J., Stolk, J., Heinzel-Wieland, R., Steffens, G. J. and Dijkman, J. H. (1996) Antibacterial activity of antileukoprotease. Infect. Immun. 64:4520–4524.

    PubMed  CAS  Google Scholar 

  30. McNeely, T. B., Dealy, M., Dripps, D. J., Orenstein, J. M., Eisenberg, S. P. and Wahl, S. M. (1995) Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J. Clin. Invest. 96:456–464.

    Article  PubMed  CAS  Google Scholar 

  31. Simpson, A. J., Maxwell, A. I., Govan, J. R., Haslett, C. and Sallenave, J. M. (1999) Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett. 452:309–313.

    Article  PubMed  CAS  Google Scholar 

  32. Cole, A. M., Liao, H. I., Stuchlik, O., Tilan, J., Pohl, J. and Ganz, T. (2002) Cationic Polypeptides Are Required for Antibacterial Activity of Human Airway Fluid. J. Immunol. 169:6985.

    PubMed  CAS  Google Scholar 

  33. Nakamura, A., Mori, Y., Hagiwara, K., et al. (2003) Increased susceptibility to LPS-induced endotoxin shock in secretory leukoprotease inhibitor (SLPI)-deficient mice. J. Exp. Med. 197:669–674.

    Article  PubMed  CAS  Google Scholar 

  34. Simpson, A. J., Wallace, W. A., Marsden, M. E., et al. (2001) Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection. J. Immunol. 167: 1778–1786.

    PubMed  CAS  Google Scholar 

  35. Yang, D., Chertov, O. and Oppenheim, J. J. (2001) Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69:691–697.

    PubMed  CAS  Google Scholar 

  36. Davidson, D. J., Currie, A. J., Reid, G. S. D., et al. (2004) The Cationic Antimicrobial Peptide LL-37 Modulates Dendritic Cell Differentiation and Dendritic Cell-Induced T Cell Polarization. J. Immunol. 172: 1146–1156.

    PubMed  CAS  Google Scholar 

  37. Lillard, J. W., Jr., Boyaka, P. N., Chertov, O., Oppenheim, J. J. and McGhee, J. R. (1999) Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. U. S. A 96: 651–656.

    Article  PubMed  CAS  Google Scholar 

  38. Erjefalt, J. S. and Persson, C. G. A. (1997) Airway epithelial repair: breathtakingly quick and multipotentially pathogenic. Thorax 52:1010–1012.

    Article  PubMed  CAS  Google Scholar 

  39. Puchelle, E. and Zahm, J.-M. (1996) Repair processes of the airway epithelium, in Environmental impact on the airways. From injury to repair. (Chretien, J. and Dusser, D., eds), Marcel Dekker, New York, pp. 157–182.

    Google Scholar 

  40. Rennard, S. I. (1996) Repair mechanisms in asthma. J. Allergy Clin. Immunol 98:S278–S286.

    Article  PubMed  CAS  Google Scholar 

  41. Jacinto, A., Martinez-Arias, A. and Martin, P. (2001) Mechanisms of epithelial fusion and repair. Nature Cell Biology 3:E117–E123.

    Article  PubMed  CAS  Google Scholar 

  42. Keenan, K. P., Combs, J. W. and McDowell, E. M. (1982) Regeneration of hamster tracheal epithelium after mechanical injury. I. Focal lesions: quantitative morphologic study of cell proliferation. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 41:193–214.

    PubMed  CAS  Google Scholar 

  43. Erjefalt, J. S., Erjefalt, I., Sundler, F. and Persson, C. G. (1995) In vivo restitution of airway epithelium. Cell Tissue Res. 281:305–316.

    PubMed  CAS  Google Scholar 

  44. Zahm, J. M., Kaplan, H., Herard, A. L.,et al. (1997) Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil. Cytoskeleton 37:33–43.

    Article  PubMed  CAS  Google Scholar 

  45. Puchelle, E. and Peault, B. (2000) Human airway xenograft models of epithelial cell regeneration. Resp.Res. 1:125–128.

    Article  CAS  Google Scholar 

  46. Murphy, C. J., Foster, B. A., Mannis, M. J., Selsted, M. E. and Reid, T. W. (1993) Defensins are mitogenic for epithelial cells and fibroblasts. J. Cell. Physiol. 155:408–413.

    Article  PubMed  CAS  Google Scholar 

  47. Aarbiou, J., Ertmann, M., van Wetering, S.,et al. (2002) Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J. Leukoc. Biol. 72:167–174.

    PubMed  CAS  Google Scholar 

  48. Calafat, J., Janssen, H., Stahle-Backdahl, M., Zuurbier, A. E., Knol, E. F. and Egesten, A. (1997) Human monocytes and neutrophils store transforming growth factor-alpha in a subpopulation of cytoplasmic granules. Blood 90:1255–1266.

    PubMed  CAS  Google Scholar 

  49. Egesten, A., Calafat, J., Knol, E. F., Janssen, H. and Walz, T. M. (1996) Subcellular localization of transforming growth factor-alpha in human eosinophil granulocytes. Blood 87:3910–3918.

    PubMed  CAS  Google Scholar 

  50. Takeyama, K., Jung, B., Shim, J. J.,et al. (2001) Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am. J. Physiol. Lung Cell Mol. Physiol. 280: L165–L172.

    PubMed  CAS  Google Scholar 

  51. Takeyama, K., Dabbagh, K., Jeong, S. J.,et al. (2000) Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J. Immunol. 164:1546–1552.

    PubMed  CAS  Google Scholar 

  52. Breuer, R., Christensen, T. G., Lucey, E. C., Stone, P. J. and Snider, G. L. (1987) An ultrastructural morphometric analysis of elastase-treated hamster bronchi shows discharge followed by progressive accumulation of secretory granules. Am. Rev. Respir. Dis. 136:698–703.

    PubMed  CAS  Google Scholar 

  53. Stolk, J., Rudolphus, A., Davies, P.,et al. (1992) Introduction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster. J. Pathol. 167: 349–356.

    Article  PubMed  CAS  Google Scholar 

  54. Frohm, M., Gunne, H., Bergman, A.-C.,et al. (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur. J. Biochem. 237:86–92.

    Article  PubMed  CAS  Google Scholar 

  55. Dorschner, R. A., Pestonjamasp, V. K., Tamakuwala, S.,et al. (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J. Invest. Dermatol. 117: 91–97.

    Article  PubMed  CAS  Google Scholar 

  56. Heilborn, J. D., Nilsson, M. F., Kratz, G.,et al. (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol. 120:379–389.

    Article  PubMed  CAS  Google Scholar 

  57. Schmid, P., Grenet, O., Medina, J., Chibout, S. D., Osborne, C. and Cox, D. A. (2001) An intrinsic antibiotic mechanism in wounds and tissue-engineered skin. J. Invest. Dermatol. 116:471–472.

    Article  PubMed  CAS  Google Scholar 

  58. Wingens, M., van Bergen, B. H., Hiemstra, P. S.,et al. (1998) Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. J. Invest. Dermatol. 111:996–1002.

    Article  PubMed  CAS  Google Scholar 

  59. van Bergen, B. H., Andriessen, M. P., Spruijt, K. I., van de Kerkhof, P. C. and Schalkwijk, J. (1996) Expression of SKALP/elafin during wound healing in human skin. Arch. Dermatol. Res. 288:458–462.

    PubMed  Google Scholar 

  60. Frohm, M., Agerberth, B., Ahangari, G.,et al. (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem. 272: 15258–15263.

    Article  PubMed  CAS  Google Scholar 

  61. Harder, J., Bartels, J., Christophers, E. and Schröder, J.-M. (1997) A peptide antibiotic from human skin. Nature 387:861.

    Article  PubMed  CAS  Google Scholar 

  62. Harder, J., Bartels, J., Christophers, E. and Schroder, J. M. (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276:5707–5713.

    Article  PubMed  CAS  Google Scholar 

  63. Sorensen, O. E., Cowland, J. B., Theilgaard-Monch, K., Liu, L., Ganz, T. and Borregaard, N. (2003) Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol. 170:5583–5589.

    PubMed  CAS  Google Scholar 

  64. Aarbiou, J., Verhoosel, R. M., van Wetering, S.,et al. (2004) Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am. J. Respir. Cell Mol. Biol. 30:193–201.

    Article  PubMed  CAS  Google Scholar 

  65. Hagiwara, T., Shinoda, I., Fukuwatari, Y. and Shimamura, S. (1995) Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line, IEC-18, in the presence of epidermal growth factor. Biosci. Biotechnol. Biochem. 59:1875–1881.

    Article  PubMed  CAS  Google Scholar 

  66. Aarbiou, J., Van Schadewijk, A., Stolk, J.,et al. (2004) Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways. Inflamm. Res. 53: 230–238.

    Article  PubMed  CAS  Google Scholar 

  67. Koczulla, R., von Degenfeld, G., Kupatt, C., Krotz, F., Zahler, S., Gloe, T., Issbrucker, K., Unterberger, P., Zaiou, M., Lebherz, C., Karl, A., Raake, P., Pfosser, A., Boekstegers, P., Welsch, U., Hiemstra, P. S., Vogelmeier, C., Gallo, R. L., Clauss, M. and Bals, R. (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest. 111, 1665–1672.

    Article  PubMed  CAS  Google Scholar 

  68. Tjabringa, G. S., Aarbiou, J., Ninaber, D. K.,et al. (2003) The Antimicrobial Peptide LL-37 Activates Innate Immunity at the Airway Epithelial Surface by Transactivation of the Epidermal Growth Factor Receptor. J. Immunol. 171:6690–6696.

    PubMed  CAS  Google Scholar 

  69. Frye, M., Bargon, J. and Gropp, R. (2001) Expression of human beta-defensin-1 promotes differentiation of keratinocytes. J Mol. Med. 79:275–282.

    Article  PubMed  CAS  Google Scholar 

  70. Ashcroft, G. S., Lei, K., Jin, W.,et al. (2000) Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat. Med. 6:1147–1153.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang, D., Simmen, R. C., Michel, F. J., Zhao, G., Vale-Cruz, D. and Simmen, F. A. (2002) Secretory leukocyte protease inhibitor mediates proliferation of human endometrial epithelial cells by positive and negative regulation of growth-associated genes. J. Biol. Chem. 277:29,999–30,009.

    Article  PubMed  CAS  Google Scholar 

  72. Zhu, J., Nathan, C., Jin, W.,et al. (2002) Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111:867–878.

    Article  PubMed  CAS  Google Scholar 

  73. Kikuchi, T., Abe, T., Yaekashiwa, M., et al. (2000) Secretory leukoprotease inhibitor augments hepatocyte growth factor production in human lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 23:364–370.

    PubMed  CAS  Google Scholar 

  74. Zahm, J. M., Debordeaux, C., Raby, B., Klossek, J. M., Bonnet, N. and Puchelle, E. (2000) Motogenic effect of recombinant HGF on airway epithelial cells during the in vitro wound repair of the respiratory epithelium. J. Cell. Physiol. 185:447–453.

    Article  PubMed  CAS  Google Scholar 

  75. Mogi, M., Inagaki, H., Kojima, K., Minami, M. and Harada, M. (1995) Transforming growth factor-alpha in human submandibular gland and saliva. J. Immunoassay 16:379–394.

    Article  PubMed  CAS  Google Scholar 

  76. Murakami, M., Ohtake, T., Dorschner, R. A. and Gallo, R. L. (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent. Res. 81:845–850.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hiemstra, P.S. (2005). Repair and Defense Systems at the Epithelial Surface in the Lung. In: Walz, W. (eds) Integrative Physiology in the Proteomics and Post-Genomics Age. Humana Press. https://doi.org/10.1385/1-59259-925-7:201

Download citation

Publish with us

Policies and ethics