Skip to main content

PNS Precursor Cells in Development and Cancer

  • Chapter
Neural Development and Stem Cells

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The peripheral nervous system (PNS) is comprised of groups of neurons and support cells whose cell bodies lie outside the spinal cord and brain. These peripheral ganglia relay sensory input back to the central nervous system (CNS), where the information is processed and physical responses are generated. The PNS is derived primarily from a population of precursor cells called neural crest cells that arise within the developing CNS but subsequently migrate to the periphery and are highly versatile with respect to the types of derivatives that they form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Douarin, N. (1982) The Neural Crest. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  2. Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509–514.

    Article  PubMed  CAS  Google Scholar 

  3. Morrison, S. J., White, P. M., Zock, C., and Anderson, D. J. (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749.

    Article  PubMed  CAS  Google Scholar 

  4. His, W. (1868) Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei. F. C. W. Vogel, Leipzig.

    Google Scholar 

  5. Landacre, F. L. (1921) The fate of the neural crest in the head of the Urodeles. J. Comp. Neurol. 33, 1–43.

    Article  Google Scholar 

  6. Stone, L. S. (1922) Experiments on the development of the cranial ganglia and the lateral line sense organs in Amblystoma punctatum. J. Exp. Zool. 35, 421–496.

    Article  Google Scholar 

  7. Harrison, R. G. (1938) Die Neuralleiste Erganzheft. Anat. Anz. 85, 3–30.

    Google Scholar 

  8. Hörstadius, S. (1950) The Neural Crest. Oxford University Press Oxford.

    Google Scholar 

  9. Hall, B. K. and Hörstadius, S. (1988) The Neural Crest. Oxford University Press, Oxford.

    Google Scholar 

  10. Bronner-Fraser, M. (1993) Mechanisms of neural crest cell migration. BioEssays 15, 221–230.

    Article  PubMed  CAS  Google Scholar 

  11. Erickson, C. A. and Perris, R. (1993) The role of cell-cell and cell-matrix interactions in the morphogenesis of the neural crest. Dev. Biol. 159, 60–74.

    Article  PubMed  CAS  Google Scholar 

  12. Stemple, D. L. and Anderson, D. J. (1993) Lineage diversification of the neural crest: in vitro investigations. Dev. Biol. 159, 12–23.

    Article  PubMed  CAS  Google Scholar 

  13. Selleck, M. A. J. and Bronner-Fraser, M. (1995) Origins of the avian neural crest: the role of neural plate-epidermal interactions. Development 121, 525–538.

    PubMed  CAS  Google Scholar 

  14. Sasai, Y. and De Robertis, E. M. (1997) Ectodermal patterning in vertebrate embryos. Dev. Biol. 182, 5–20.

    Article  PubMed  CAS  Google Scholar 

  15. Weinstein, D. C. and Hemmati-Brivanlou, A. (1997) Neural induction in Xenopus laevis: evidence for the default model. Curr. Opin. Neurobiol. 7, 7–12.

    Article  PubMed  CAS  Google Scholar 

  16. Wilson, P. A., Lagna, G., Suzuki, A., and Hemmati-Brivanlou, A. (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184.

    PubMed  CAS  Google Scholar 

  17. Chang, C. and Hemmati-Brivanlou, A. (1998) Neural crest induction by Xwnt7B in Xenopus. Dev. Biol. 194, 129–134.

    Article  CAS  Google Scholar 

  18. Le Douarin, N. M., Fontaine-Perus, J., and Couly, G. (1986) Cephalic ectodermal placodes and neurogenesis. Trends Neurosci. 9, 175–180.

    Article  Google Scholar 

  19. Webb, J. F. and Noden, D. M. (1993) Ectodermal placodes: contributions to the development of the vertebrate head. Am. Zool. 33, 434–447.

    Google Scholar 

  20. Baker, C. V. and Bronner-Fraser, M. (1997) The origins of the neural crest. Part I: embryonic induction. Mech. Dev. 69, 3–11.

    Article  PubMed  CAS  Google Scholar 

  21. Labonne, C. and Bronner-Fraser, M. (1999) Molecular mechanisms of neural crest formation. Annu. Rev. Cell Dev. Biol. 15, 81–112.

    Article  PubMed  CAS  Google Scholar 

  22. Olsson, L. and Hanken, J. (1996) Cranial neural-crest migration and chondrogenic fate in the Oriental fire-bellied toad Bombina orientalis: defining the ancestral pattern of head development in anuran amphibians. J. Morphol. 229, 105–120.

    Article  Google Scholar 

  23. Bartelmez, G. W. (1922) The origin of the otic and optic primordia. J. Comp. Neurol. 34, 201–232.

    Article  Google Scholar 

  24. Holmdahl, D. E. (1928) Die Enstehung und weitere Entwicklung der Neuralleiste (Ganglienleiste) bei Vogeln und Saugetieren. Z. Mikrosk. Anat. Forsch. 14, 99–298.

    Google Scholar 

  25. Verwoerd, C. D. A. and van Oostrom, C. G. (1979) Cephalic neural crest and placodes. Adv. Anat. Embryol. Cell Biol. 58, 1–75.

    PubMed  CAS  Google Scholar 

  26. Nichols, D. H. (1981) Neural crest formation in the head of the mouse embryo as observed using a new histological technique. J. Embryol. Exp. Morphol. 64, 105–120.

    PubMed  CAS  Google Scholar 

  27. Bronner-Fraser, M. (1986) Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev. Biol. 115, 44–55.

    Article  PubMed  CAS  Google Scholar 

  28. Bronner-Fraser, M. and Fraser, S. E. (1989) Developmental potential of avian neural crest cells in situ. Neuron 3, 755–766.

    Article  PubMed  CAS  Google Scholar 

  29. Bronner-Fraser, M. and Fraser, S. E. (1988) Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164.

    Article  PubMed  CAS  Google Scholar 

  30. Collazo, A., Bronner-Fraser, M., and Fraser, S. E. (1993) Vital dye labeling of Xenopus-laevis trunk neural crest reveals multipotency and novel pathways of migration. Development 118, 363–376.

    PubMed  CAS  Google Scholar 

  31. Serbedzija, G. N., Bronner-Fraser, M., and Fraser, S. E. (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307.

    PubMed  CAS  Google Scholar 

  32. Serbedzija, G. N., Bronner-Fraser, M., and Fraser, S. E. (1994) Developmental potential of trunk neural crest cells in the mouse. Development 120, 1709–1718.

    PubMed  CAS  Google Scholar 

  33. Artinger, K. B., Chitnis, A. B., Mercola, M., and Driever, W. (1999) Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons. Development 126, 3969–3979.

    PubMed  CAS  Google Scholar 

  34. Mujtaba, T., Mayer-Proschel, M., and Rao, M. S. (1998) A common neural progenitor for the CNS and PNS. Dev. Biol. 200, 1–15.

    Article  PubMed  CAS  Google Scholar 

  35. Sharma, K., Korade, Z., and Frank, E. (1995) Late-migrating neuroepithelial cells from the spinal cord differentiate into sensory ganglion cells and melanocytes. Neuron 14, 143–152.

    Article  PubMed  CAS  Google Scholar 

  36. Korade, Z. and Frank, E. (1996) Restriction in cell fates of developing spinal cord cells transplanted to neural crest pathways. J. Neurosci. 16, 7638–7648.

    PubMed  CAS  Google Scholar 

  37. Ruffins, S., Artinger, K., and Bronner-Fraser, M. (1998) Early migrating neural crest cells can form ventral neural tube derivatives when challenged by transplantation. Dev. Biol. 203, 295–304.

    Article  PubMed  CAS  Google Scholar 

  38. Sohal, G. S., Bockman, D. E., Ali, M. M., and Tsai, N. T. (1996) DiI labeling and homeobox gene islet-1 expression reveal the contribution of ventral neural tube cells to the formation of the avian trigeminal ganglion. Int. J. Dev. Neurosci. 14, 419–427.

    Article  PubMed  CAS  Google Scholar 

  39. Rollhäuser-ter Horst, J. (1980) Neural crest replaced by gastrula ectoderm in Amphibia. Anat. Embryol. 160, 203–211.

    Article  PubMed  Google Scholar 

  40. Moury, J. D. and Jacobson, A. G. (1990) The origins of neural crest cells in the axolotl. Dev. Biol. 141, 243–253.

    Article  PubMed  CAS  Google Scholar 

  41. Dickinson, M. E., Selleck, M. A. J., McMahon, A. P., and Bronner-Fraser, M. (1995) Dorsalization of the neural tube by the non-neural ectoderm. Development 121, 2099–2106.

    PubMed  CAS  Google Scholar 

  42. Mancilla, A. and Mayor, R. (1996) Neural crest formation in Xenopus laevis: mechanisms of Xslug induction. Dev. Biol. 177, 580–589.

    Article  PubMed  CAS  Google Scholar 

  43. Scherson, T., Serbedzija, G., Fraser, S., and Bronner-Fraser, M. (1993) Regulative capacity of the cranial neural tube to form neural crest. Development 118, 1049–1061.

    PubMed  CAS  Google Scholar 

  44. Sechrist, J., Nieto, M. A., Zamanian, R. T., and Bronner-Fraser, M. (1995) Regulative response of the cranial neural tube after neural fold ablation: spatiotemporal nature of neural crest regeneration and upregulation of Slug. Development 121, 4103–4115.

    PubMed  CAS  Google Scholar 

  45. Hunt, P., Ferretti, P., Krumlauf, R., and Thorogood, P. (1995) Restoration of normal Hox code and branchial arch morphogenesis after extensive deletion of hindbrain neural crest. Dev. Biol. 168, 584–597.

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki, H. R. and Kirby, M. L. (1997) Absence of neural crest cell regeneration from the postotic neural tube. Dev. Biol. 184, 222–233.

    Article  PubMed  CAS  Google Scholar 

  47. Couly, G., Grapin-Botton, A., Coltey, P., and Le Douarin, N. M. (1996) The regeneration of the cephalic neural crest, a problem revisited—the regenerating cells originate from the contralateral or from the anterior and posterior neural fold. Development 122, 3393–3407.

    PubMed  CAS  Google Scholar 

  48. Dale, L., Howes, G., Price, B. M. J., and Smith, J. C. (1992) Bone Morphogenetic Protein 4: a ventralizing factor in Xenopus development. Development 115, 573–585.

    PubMed  CAS  Google Scholar 

  49. Fainsod, A., Steinbeisser, H., and DeRobertis, E. (1994) On the function of BMP 4 in patterning the ventral marginal zone of the Xenopus embryo. EMBO J. 13, 5015–5025.

    PubMed  CAS  Google Scholar 

  50. Hemmati-Brivanlou, A. and Thomsen, G. H. (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17, 78–89.

    Article  PubMed  CAS  Google Scholar 

  51. Lamb, T. M., Knecht, A. K., Smith, W. C., et al. (1993) Neural induction by the secreted peptide noggin. Science 262, 713–718.

    Article  PubMed  CAS  Google Scholar 

  52. Lamb, T. M. and Harland, R. M. (1995) Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121, 3627–3636.

    PubMed  CAS  Google Scholar 

  53. Sasai, Y., Lu, B., Steinbesser, H., Geissert, D., Gont, L. K., and De Robertis, E. M. (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790.

    Article  PubMed  CAS  Google Scholar 

  54. Piccolo, S., Sasai, Y., Lu, B., and De Robertis, E. M. (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598.

    Article  PubMed  CAS  Google Scholar 

  55. Hemmati-Brivanlou, A., Kelly, O. G., and Melton, D. A. (1994) Follistatin, an antagonist of activin is expressed in the Spemann organizer and displays direct neuralizing activity. Cell. 77, 283–295.

    Article  PubMed  CAS  Google Scholar 

  56. Fainsod A, Deissler, K., Yelin, R., et al. (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP4. Mech. Dev. 63, 39–50.

    Article  PubMed  CAS  Google Scholar 

  57. Raven, C. P. and Kloos, J. (1945) Induction by medial and lateral pieces of the archenteron roof with special reference to the determination of the neural crest. Acta Néerl. Morph. 5, 348–362.

    Google Scholar 

  58. Knecht, A. K., Good, P. G., Dawid, I. B., and Harland, R. M. (1995) Dorsal-ventral patterning and differentiation of noggin-induced neural tissue in the absence of mesoderm. Development 121, 1927–1936.

    PubMed  CAS  Google Scholar 

  59. Marchant, L., Linker, C., Ruiz, P., Guerrero, N., and Mayor, R. (1998) The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev. Biol. 198, 319–329.

    PubMed  CAS  Google Scholar 

  60. LaBonne, C. and Bronner-Fraser, M. (1998) Neural crest induction in Xenopus: evidence for a two signal model. Development 125, 2403–2414.

    PubMed  CAS  Google Scholar 

  61. Nguyen, V. H., Schmid, B., Trout, J., Connors, S. A., Ekker, M., and Mullins, M. C. (1998) Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev. Biol. 199, 93–110.

    Article  PubMed  CAS  Google Scholar 

  62. Hammerschmidt, M., Serbedzija, G. N., and McMahon, A. P. (1996) Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452–2461.

    Article  PubMed  CAS  Google Scholar 

  63. Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M., and Schulte-Merker, S. (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124, 4457–4466.

    PubMed  CAS  Google Scholar 

  64. Delot, E., Kataoka, H., Goutel, C., et al. (1999) The BMP-related protein radar: a maintenance factor for dorsal neuroectoderm cells? Mech. Dev. 85, 15–25.

    Article  PubMed  CAS  Google Scholar 

  65. Hogan, B. L. (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594.

    Article  PubMed  CAS  Google Scholar 

  66. Winnier, G., Blessing, M., Labosky, P. A., and Hogan, B. L. (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116.

    Article  PubMed  CAS  Google Scholar 

  67. Matzuk, M. M., Lu, N., Vogel, H., Sellheyer, K., Roop, D. R., and Bradley, A. (1995) Multiple defects and perinatal death in mice deficient in follistatin. Nature 374, 360–363.

    Article  PubMed  CAS  Google Scholar 

  68. McMahon, J. A., Takada, S., Zimmerman, L. B., Fan, C. M., Harland, R. M., and McMahon, A. P. (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452.

    PubMed  CAS  Google Scholar 

  69. Lee, K. J. and Jessell, T. M. (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294.

    Article  PubMed  CAS  Google Scholar 

  70. Liem, K. F., Tremmi, G., Roelink, H., and Jessell, T. M. (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979.

    Article  PubMed  CAS  Google Scholar 

  71. Schultheiss, T. M., Burch, J. B., and Lassar, A. B. (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 11, 451–462.

    Article  PubMed  CAS  Google Scholar 

  72. Watanabe, Y. and Le Douarin, N. M. (1996) A role for BMP-4 in the development of subcutaneous cartilage. Mech. Dev. 57, 69–78.

    Article  PubMed  CAS  Google Scholar 

  73. Streit, A., Lee, K. J., Woo, I., Roberts, C., Jessell, T. M., and Stern, C. D. (1998) Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient forneural induction in the chick embryo. Development 125, 507–519.

    PubMed  CAS  Google Scholar 

  74. Selleck, M. A., Garcia-Castro, M. I., Artinger, K. B., and Bronner-Fraser, M. (1998) Effects of shh and noggin on neural crest formation demonstrate that BMP is required in the neural tube but not ectoderm. Development 125, 4919–4930.

    PubMed  CAS  Google Scholar 

  75. Pera, E., Stein, S., and Kessel, M. (1999) Ectodermal patterning in the avian embryo: epidermis versus neural plate. Development 26, 63–73.

    Google Scholar 

  76. Liem, K. F., Tremml, G., and Jessell, T. M. (1997) A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138.

    Article  PubMed  CAS  Google Scholar 

  77. Anderson, D. J. (1993) Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. J. Neurobiol. 24, 185–198.

    Article  PubMed  CAS  Google Scholar 

  78. Varley, J. E., McPherson, C. E., Zou, H., Niswander, L., and Maxwell, G. D. (1998) Expression of a constitutively active type I BMP receptor using a retroviral vector promotes the development of adrenergic cells in neural crest cultures. Dev. Biol. 196, 107–118.

    Article  PubMed  CAS  Google Scholar 

  79. Schneider, C., Wicht, H., Enderich, J., Wegner, M., and Rohrer, H. (1999) Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24, 861–870.

    Article  PubMed  CAS  Google Scholar 

  80. Wilson, P. A. and Hemmati-Brivanlou, A. (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333.

    Article  PubMed  CAS  Google Scholar 

  81. Mitani, S. and Okamoto, H. (1991) Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells. Development 112, 21–31.

    PubMed  CAS  Google Scholar 

  82. Bang, A. G., Papalopulu, N., Kintne, R. C., and Goulding, M. D. (1997) Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 124, 2075–2085.

    PubMed  CAS  Google Scholar 

  83. Bonstein, L., Elias, S., and Frank, D. (1998) Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos. Dev. Biol. 193, 156–168.

    Article  PubMed  CAS  Google Scholar 

  84. Wodarz, A. and Nusse, R. (1998) Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88.

    Article  PubMed  CAS  Google Scholar 

  85. Sieber-Blum, M. (1998) Growth factor synergism and antagonism in early neural crest development. Biochem. Cell Biol. 76, 1039–1050.

    Article  PubMed  CAS  Google Scholar 

  86. Vaccarino, F. M., Schwartz, M. L., Raballo, R., Rhee, J., and Lyn-Cook, R. (1999) Fibro-blast growth factor signaling regulates growth and morphogenesis at multiple steps during brain development. Curr. Top. Dev. Biol. 46, 179–200.

    PubMed  CAS  Google Scholar 

  87. Saint-Jeannet, J., He, X., Varmus, H. E., and Dawid, I. B. (1997) Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc. Natl. Acad. Sci. USA 94, 13713–13718.

    Article  PubMed  CAS  Google Scholar 

  88. Mayor, R., Morgan, R., and Sargent, M. G. (1995) Induction of the prospective neural crest of Xenopus. Development 121, 767–777.

    PubMed  CAS  Google Scholar 

  89. Bellmeyer, A., Krase, J., Lindgren, J., and LaBonne, C. (2003) The protooncogene c-myc is an essential regulator of neural crest formation in xenopus. Dev. Cell 4, 827–839.

    Article  PubMed  CAS  Google Scholar 

  90. Christian, J. L., McMahon, J. A., McMahon, A. P., and Moon, R. T. (1991) Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development 111, 1045–1055.

    PubMed  CAS  Google Scholar 

  91. Hume, C. R. and Dodd, J. (1993) Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development 119, 1147–1160.

    PubMed  CAS  Google Scholar 

  92. Bang, A. G., Papalopulu, N., Goulding, M. D., and Kintner, C. (1999) Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev. Biol. 212, 366–380.

    Article  PubMed  CAS  Google Scholar 

  93. Hollyday, M., McMahon, J. A., and McMahon, A. P. (1995) Wnt expression patterns in chick embryo nervous system. Mech. Dev. 52, 9–25.

    Article  PubMed  CAS  Google Scholar 

  94. Wolda, S. L., Moody, C. J., and Moon, R. T. (1993) Overlapping expression of Xwnt-3a and Xwnt-1 in neural tissue of Xenopus laevis embryos. Dev. Biol. 155, 46–57.

    Article  PubMed  CAS  Google Scholar 

  95. McGrew, L. L., Hoppler, S., and Moon, R. T. (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech. Dev. 69, 105–114.

    Article  PubMed  CAS  Google Scholar 

  96. Roelink, H. and Nusse, R. (1991) Expression of two members of the Wnt family during mouse development—restricted temporal and spatial patterns in the developing neural tube. Genes Dev. 5, 381–388.

    Article  PubMed  CAS  Google Scholar 

  97. Parr, B. A., Shea, M. J., Vassileva, G., and McMahon, A. P. (1993) Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119, 247–261.

    PubMed  CAS  Google Scholar 

  98. Ikeya, M., Lee, S. M., Johnson, J. E., McMahon, A. P., and Takada, S. (1997) Wnt signaling required for expansion of neural crest and CNS progenitors. Nature 389, 966–970.

    Article  PubMed  CAS  Google Scholar 

  99. Garcia-Castro, M. I., Marcelle, C., and Bronner-Fraser, M. (2002) Ectodermal Wnt function as a neural crest inducer. Science 297, 848–851.

    Article  PubMed  CAS  Google Scholar 

  100. Dorsky, R. I., Moon, R. T., and Raible, D. W. (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370–373.

    Article  PubMed  CAS  Google Scholar 

  101. Baker, J. C., Beddington, R. S., and Harland, R. M. (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev. 13, 3149–3159.

    Article  PubMed  CAS  Google Scholar 

  102. Mayor, R., Guerrero, N., and Martinez, C. (1997) Role of FGF and noggin in neural crest induction. Dev. Biol. 189, 1–12.

    Article  PubMed  CAS  Google Scholar 

  103. Kengaku, M. and Okamoto, H. (1993) Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula. Development 119, 1067–1078.

    PubMed  CAS  Google Scholar 

  104. Cox, W. G. and Hemmati-Brivanlou, A. (1995) Caudalization of neural fate by tissue recombination and bFGF. Development 121, 4349–4358.

    PubMed  CAS  Google Scholar 

  105. Launay, C., Fromentoux, V., Shi, D. L., and Boucaut, J. C. (1996) A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869–880.

    PubMed  CAS  Google Scholar 

  106. Xu, R. H., Kim, J., Taira, M., Sredni, D., and Kung, H. (1997) Studies on the role of fibroblast growth factor signaling in neurogenesis using conjugated/aged animal caps and dorsal ectoderm-grafted embryos. J. Neurosci. 17, 6892–6898.

    PubMed  CAS  Google Scholar 

  107. Tannahill, D., Isaacs, H. V., Close, M. J., Peters, G., and Slack, J. M. W. (1992) Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction. Development 115, 695–702.

    PubMed  CAS  Google Scholar 

  108. Isaacs, H. V., Tannahill, D., and Slack, J. M. W. (1992) Expression of a novel FGF in the Xenopus embryo. A New candidate inducing factor for mesoderm formation and antero-posterior specification. Development 114, 711–720.

    PubMed  CAS  Google Scholar 

  109. Mahmood, R., Kiefer, P., Guthrie, S., Dickson, C., and Mason, I. (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121, 1399–1410.

    PubMed  CAS  Google Scholar 

  110. Riese, J., Zeller, R., and Dono, R. (1995) Nucleo-cytoplasmic translocation and secretion of fibroblast growth factor-2 during avian gastrulation. Mech. Dev. 49, 13–22.

    Article  PubMed  CAS  Google Scholar 

  111. Bueno, D., Skinner, J., Abud, H., and Heath, J. K. (1996) Spatial and temporal relationships between Shh, Fgf4, and Fgf8 gene expression at diverse signalling centers during mouse development. Dev. Dyn. 207, 291–299.

    Article  PubMed  CAS  Google Scholar 

  112. Storey, K. G., Goriely, A., Sargent, C. M., et al. (1998) Early posterior neural tissue is induced by FGF in the chick embryo. Development 125, 473–484.

    PubMed  CAS  Google Scholar 

  113. Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A., and Stern, C. D. (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74–78.

    Article  PubMed  CAS  Google Scholar 

  114. Kroll, K. L. and Amaya, E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183.

    PubMed  CAS  Google Scholar 

  115. Monsoro-Burq, A. H., Fletcher, R. B., and Harland, R. M. (2003) Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 130, 3111–3124.

    Article  PubMed  CAS  Google Scholar 

  116. Kopan, R. (2002) Notch: a membrane-bound transcription factor. J. Cell Sci. 115, 1095–1097.

    Google Scholar 

  117. Williams, R., Lendahl, U., and Lardelli, M. (1995) Complementary and combinatorial patterns of Notch gene family expression during early mouse development. Mech. Dev. 53, 357–368.

    Article  PubMed  CAS  Google Scholar 

  118. Endo, Y., Osumi, N., and Wakamatsu, Y. (2002) Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 129, 863–873.

    PubMed  CAS  Google Scholar 

  119. Coffman, C. R., Skoglund, P., Harris, W. A., and Kintner, C. R. (1993) Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659–671.

    Article  PubMed  CAS  Google Scholar 

  120. Bierkamp, C. and Campos-Ortega, J. A. (1993) A zebrafish homologue of the Drosophila neurogenic gene Notch and its pattern of transcription during early embryogenesis. Mech. Dev. 43, 87–100.

    Article  PubMed  CAS  Google Scholar 

  121. Cornell, R. A. and Eisen, J. S. (2002) Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 129, 2639–2648.

    PubMed  CAS  Google Scholar 

  122. Glavic, A., Silva, F., Aybar, M. J., Bastidas, F., and Mayor, R. (2004) Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos. Development 131, 347–359.

    Article  PubMed  CAS  Google Scholar 

  123. Barembaum, M., Moreno, T. A., LaBonne, C., Sechrist, J., and Bronner-Fraser, M. (2000) Noelin-1 is a secreted glycoprotein involved in generation of the neural crest. Nat. Cell Biol. 2, 219–225.

    Article  PubMed  CAS  Google Scholar 

  124. Stemple, D. L. and Anderson, D. J. (1992) Isolation of a stem cell for neurons and glia derived from the mammalian neural crest. Cell 71, 973–985.

    Article  PubMed  CAS  Google Scholar 

  125. Doupe, A. J., Patterson, P. H., and Landis, S. C. (1985) Small intensely fluorescent cells in culture: role of glucocorticoids and growth factors in their development and inter-conversions with other neural crest derivatives. J. Neurosci. 5, 2143–2160.

    PubMed  CAS  Google Scholar 

  126. Doupe, A. J., Landis, S. C., and Patterson, P. H. (1985) Environmental influences in the development of neural crest derivatives: glucocorticoids, growth factors, and chromaffin cell plasticity. J. Neurosci. 5, 2119–2142.

    PubMed  CAS  Google Scholar 

  127. Shah, N. M., Marchionni, M. A., Isaacs, I., Stroobant, P. W., and Anderson, D. J. (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–360.

    Article  PubMed  CAS  Google Scholar 

  128. Shah, N. M., Groves, A. K., and Anderson, D. J. (1996) Alternative neural crest cell fates are instructively promoted by TGFb superfamily members. Cell 85, 331–343.

    Article  PubMed  CAS  Google Scholar 

  129. Shah, N. M. and Anderson, D. A. (1997) Integration of multiple instructive cues by neural crest stem cells reveals cell-intrinsic biases in relative growth factor responsiveness. Proc. Natl. Acad. Sci. USA 94, 11369–11374.

    Article  PubMed  CAS  Google Scholar 

  130. Morrison, S. J., Perez, S. E., Qiao, Z., et al. (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101, 499–510.

    Article  PubMed  CAS  Google Scholar 

  131. White, P. M., Morrison, S. J., Orimoto, K., Kubu, C. J., Verdi, J. M., and Anderson, D. J. (2001) Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29, 57–71.

    Article  PubMed  CAS  Google Scholar 

  132. Bixby, S., Kruger, G. M., Mosher, J. T., Joseph, N. M., and Morrison, S. J. (2002) Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35, 643–656.

    Article  PubMed  CAS  Google Scholar 

  133. Kruger, G. M., Mosher, J. T., Bixby, S., Joseph, N., Iwashita, T., and Morrison, S. J. (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35, 657–669.

    Article  PubMed  CAS  Google Scholar 

  134. Iwashita, T., Kruger, G. M., Pardal, R., Kiel, M. J., and Morrison, S. J. (2003) Hirschsprung disease is linked to defects in neural crest stem cell function. Science 301, 972–976.

    Article  PubMed  CAS  Google Scholar 

  135. Le Douarin, N. M. (1986) Cell lineage segregation during peripheral nervous system ontogeny. Science 231, 1515–1522.

    Article  PubMed  Google Scholar 

  136. Frank, E. and Sanes, J. R. (1991) Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111, 895–908.

    PubMed  CAS  Google Scholar 

  137. Kim, J., Lo, L., Dormand, E., and Anderson, D. J. (2003) SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17–31.

    Article  PubMed  CAS  Google Scholar 

  138. Southard-Smith, E. M., Kos, L., and Pavan, W. J. (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18, 60–64.

    Article  PubMed  CAS  Google Scholar 

  139. Serbedzija, G., Bronner-Fraser, M., and Fraser, S. E. (1989) Vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 106, 806–816.

    Google Scholar 

  140. Weston, J. A. and Butler, S. L. (1966) Temporal factors affecting the localization of neural crest cells in chick embryos. Dev. Biol. 14, 246–266.

    Article  PubMed  CAS  Google Scholar 

  141. Baker, C. V. H., Bronner-Fraser, M., Le Douarin, N. M., and Teillet, M. (1997) Early-and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo. Development 124, 3077–3087.

    PubMed  CAS  Google Scholar 

  142. Richardson, M. K. and Sieber-Blum, M. (1993) Pluripotent neural crest cells in the developing skin of the quail embryo. Dev. Biol. 157, 348–358.

    Article  PubMed  CAS  Google Scholar 

  143. Hagedorn, L., Suter, U., and Sommer, L. (1999) P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development 126, 3781–3794.

    PubMed  CAS  Google Scholar 

  144. Artinger, K. B. and Bronner-Fraser, M. (1992) Partial restriction in the developmental potential of late emigrating avian neural crest cells. Dev. Biol. 149, 149–157.

    Article  PubMed  CAS  Google Scholar 

  145. Perez, S. E., Rebelo, S., and Anderson, D. J. (1999) Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126, 1715–1728.

    PubMed  CAS  Google Scholar 

  146. Lee, H. Y., Kleber, M., Hari, L., et al. (2004) Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303, 1020–1023.

    Article  PubMed  CAS  Google Scholar 

  147. Trainor, P. A., Ariza-McNaughton, L., and Krumlauf, R. (2002) Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295, 1288–1291.

    Article  PubMed  CAS  Google Scholar 

  148. Pasqualetti, M., Ori, M., Nardi, I., and Rijli, F. M. (2000) Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 127, 5367–5378.

    PubMed  CAS  Google Scholar 

  149. Grammatopoulos, G. A., Bell, E., Toole, L., Lumsden, A., and Tucker, A. S. (2000) Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 127, 5355–5365.

    PubMed  CAS  Google Scholar 

  150. Carr, V. M. and Simpson, S. B., Jr. (1978) Proliferative and degenerative events in the early development of chick dorsal root ganglia. II. Responses to altered peripheral fields. J. Comp. Neurol. 182, 741–755.

    Article  PubMed  CAS  Google Scholar 

  151. Marchionni, M. A., Goodearl, A., Chen, M. S., et al. (1993) Glial growth factors are alternatively spliced erbB2 ligand expressed in the nervous system. Nature 362, 312–318.

    Article  PubMed  CAS  Google Scholar 

  152. Orr-Urtreger, A., Trakhtenbrot, L., Ben-Levy, R., et al. (1993) Neural expression and chromosomal mapping of Neu differentiation factor to 8p12–p21. Proc. Natl. Acad. Sci. USA 90, 1867–1871.

    Article  PubMed  CAS  Google Scholar 

  153. Meyer, D. and Birchmeier, C. (1995) Multiple essential functions of neuregulin in development. Nature 378, 386–390.

    Article  PubMed  CAS  Google Scholar 

  154. Lemke, G. (1996) Neuregulins in development. Mol. Cell Neurosci. 7, 247–262.

    Article  PubMed  CAS  Google Scholar 

  155. Meyer, D., Yamaai, T., Garratt, A., et al. (1997) Isoform-specific expression and function of neuregulin. Development 124, 3575–3586.

    PubMed  CAS  Google Scholar 

  156. Oakley, R. A., Lasky, C. J., Erickson, C. A., and Tosney, K. W. (1994) Glycoconjugates mark a transient barrier to neural crest migration in the chicken embryo. Development 120, 103–114.

    PubMed  CAS  Google Scholar 

  157. Perris, R. (1997) The extracellular matrix in neural crest-cell migration. Trends Neurosci. 20, 23–31.

    Article  PubMed  CAS  Google Scholar 

  158. Anderson, D. J. (1999) Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr. Opin. Neurobiol. 9, 517–524.

    Article  PubMed  CAS  Google Scholar 

  159. Trentin, A., Glavieux-Pardanaud, C., Le Douarin, N. M., and Dupin, E. (2004) Self-renewal capacity is a widespread property of various types of neural crest precursor cells. Proc. Natl. Acad. Sci. USA 101, 4495–4500.

    Article  PubMed  CAS  Google Scholar 

  160. Bitgood, M. J. and McMahon, A. P. (1995) Hedgehog and BMP genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172, 126–138.

    Article  PubMed  CAS  Google Scholar 

  161. Lyons, K. M., Hogan, B. L. M., and Robertson, E. J. (1995) Colocalization of BMP2 and BMP7 RNAs suggests that these factors cooperatively mediate tissue interaction during murine development. Mech. Dev. 50, 71–83.

    Article  PubMed  CAS  Google Scholar 

  162. Ito, K. and Sieber-Blum, M. (1993) Pluripotent and developmentally restricted neural-crest-derived cells in posterior visceral arches. Dev. Biol. 156, 191–200.

    Article  PubMed  CAS  Google Scholar 

  163. LaBonne, C. and Bronner-Fraser, M. (1998) Induction and patterning of the neural crest, a stem cell-like precursor population. J. Neurobiol. 36, 175–189.

    Article  PubMed  CAS  Google Scholar 

  164. Groves, A. and Bronner-Fraser, M. (1999) Neural crest diversification. Curr. Top. Dev. Biol. 43, 221–258.

    Article  PubMed  CAS  Google Scholar 

  165. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature 414, 105–111.

    Article  PubMed  CAS  Google Scholar 

  166. Pardal, R., Clarke, M. F., and Morrison, S. J. (2003) Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer 3, 895–902.

    Article  PubMed  CAS  Google Scholar 

  167. Sell, S. and Pierce, G. B. (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab. Invest. 70, 6–22.

    PubMed  CAS  Google Scholar 

  168. Wechsler-Reya, R. and Scott, M. P. (2001) The developmental biology of brain tumors. Annu. Rev. Neurosci. 24, 385–428.

    Article  PubMed  CAS  Google Scholar 

  169. Bonnet, D. and Dick, J. E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737.

    Article  PubMed  CAS  Google Scholar 

  170. Reya, T., Duncan, A. W., Ailles, L., et al. (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414.

    Article  PubMed  CAS  Google Scholar 

  171. Lessard, J. and Sauvageau, G. (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260.

    Article  PubMed  CAS  Google Scholar 

  172. Park, I. K., Qian, D., Kiel, M., et al. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305.

    Article  PubMed  CAS  Google Scholar 

  173. Molofsky, A. V., Pardal, R., Iwashita, T., Park, I. K., Clarke, M. F., and Morrison, S. J. (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967.

    Article  PubMed  CAS  Google Scholar 

  174. Hamburger, A. W. and Salmon, S. E. (1977) Primary bioassay of human tumor stem cells. Science 197, 461–463.

    Article  PubMed  CAS  Google Scholar 

  175. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  176. Ignatova, T. N., Kukekov, V. G., Laywell, E. D., Suslov, O. N., Vrionis, F. D., and Steindler, D. A. (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39, 193–206.

    Article  PubMed  Google Scholar 

  177. Hemmati, H. D., Nakano, I., Lazareff, J. A., et al. (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 100, 15178–15183.

    Article  PubMed  CAS  Google Scholar 

  178. Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828.

    PubMed  CAS  Google Scholar 

  179. Kondo, T., Setoguchi, T., and Taga, T. (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl. Acad. Sci. USA 101, 781–786.

    Article  PubMed  CAS  Google Scholar 

  180. Passegue, E., Jamieson, C. H., Ailles, L. E., and Weissman, I. L. (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl. Acad. Sci. USA 100(Suppl 1), 11842–11849.

    Article  PubMed  CAS  Google Scholar 

  181. Cozzio, A., Passegue, E., Ayton, P. M., Karsunky, H., Cleary, M. L., and Weissman, I. L. (2003) Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035.

    Article  PubMed  CAS  Google Scholar 

  182. Brustle, O. and McKay, R. D. (1995) The neuroepithelial stem cell concept: implications for neuro-oncology. J. Neurooncol. 24, 57–59.

    Article  PubMed  CAS  Google Scholar 

  183. Holland, E. C. (2000) A mouse model for glioma: biology, pathology, and therapeutic opportunities. Toxicol. Pathol. 28, 171–177.

    PubMed  CAS  Google Scholar 

  184. Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., and Fuller, G. N. (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25, 55–57.

    Article  PubMed  CAS  Google Scholar 

  185. Mischel, P. S., Shai, R., Shi, T., et al. (2003) Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22, 2361–2373.

    Article  PubMed  CAS  Google Scholar 

  186. Sutton, L. N., Phillips, P., and Lange, B. (1992) Midline supratentorial tumors. Neurosurg. Clin. N. Am. 3, 821–837.

    PubMed  CAS  Google Scholar 

  187. Koos, W. T. and Horaczek, A. (1985) Statistics of intracranial midline tumors in children. Acta Neurochir. Suppl. (Wien) 35, 1–5.

    CAS  Google Scholar 

  188. Sanai, N., Tramontin, A. D., Quinones-Hinojosa, A., et al. (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744.

    Article  PubMed  CAS  Google Scholar 

  189. Tohyama, T., Lee, V. M., Rorke, L. B., Marvin, M., McKay, R. D., and Trojanowski, J. Q. (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab. Invest. 66, 303–313.

    PubMed  CAS  Google Scholar 

  190. Rorke, L. B., Trojanowski, J. Q., Lee, V. M., et al. (1997) Primitive neuroectodermal tumors of the central nervous system. Brain Pathol. 7, 765–784.

    PubMed  CAS  Google Scholar 

  191. Almqvist, P. M., Mah, R., Lendahl, U., Jacobsson, B., and Hendson, G. (2002) Immuno-histochemical detection of nestin in pediatric brain tumors. J. Histochem. Cytochem. 50, 147–158.

    PubMed  CAS  Google Scholar 

  192. Taipale, J. and Beachy, P. A. (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354.

    Article  PubMed  CAS  Google Scholar 

  193. Gilbertson, R., Hernan, R., Pietsch, T., et al. (2001) Novel ERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes Chromosomes Cancer 31, 288–294.

    Article  PubMed  CAS  Google Scholar 

  194. Uchida, N., Buck, D. W., He, D., et al. (2000) Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720–14725.

    Article  PubMed  CAS  Google Scholar 

  195. Brodeur, G. M. (2003) Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216.

    Article  PubMed  CAS  Google Scholar 

  196. Nakagawara, A. and Ohira, M. (2004) Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett. 204, 213–224.

    Article  PubMed  CAS  Google Scholar 

  197. Riccardi, V. M. (1991) Neurofibromatosis: past, present, and future. N. Engl. J. Med. 324, 1283–1285.

    Article  PubMed  CAS  Google Scholar 

  198. Ferner, R. E. and O’Doherty, M. J. (2002) Neurofibroma and schwannoma. Curr. Opin. Neurol. 15, 679–684.

    Article  PubMed  Google Scholar 

  199. Thiele, C. J. (1991) Biology of pediatric peripheral neuroectodermal tumors. Cancer Metastas. Rev. 10, 311–319.

    Article  CAS  Google Scholar 

  200. Cavazzana, A. O., Miser, J. S., Jefferson, J., and Triche, T. J. (1987) Experimental evidence for a neural origin of Ewing’s sarcoma of bone. Am. J. Pathol. 127, 507–518.

    PubMed  CAS  Google Scholar 

  201. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A., and van Lohuizen, M. (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168.

    Article  PubMed  CAS  Google Scholar 

  202. Jacobs, J. J., Scheijen, B., Voncken, J. W., Kieboom, K., Berns, A., and van Lohuizen, M. (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690.

    Article  PubMed  CAS  Google Scholar 

  203. Leung, C., Lingbeek, M., Shakhova, O., et al. (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hemmati, H.D., Moreno, T.A., Bronner-Fraser, M. (2006). PNS Precursor Cells in Development and Cancer. In: Rao, M.S. (eds) Neural Development and Stem Cells. Contemporary Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-914-1:189

Download citation

Publish with us

Policies and ethics