Skip to main content

Glial Restricted Precursors

  • Chapter
Neural Development and Stem Cells

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The most numerous of the cells of the central nervous system (CNS) are the glia. These cells, which include the myelin-forming oligodendrocytes of the white matter and the ubiquitous astrocytes, play many roles in normal development and in disease. A subject of study since the time of del Rio de Hortega, a great deal of knowledge has been obtained regarding the development and function of these cells. Nonetheless, it must be recognized that we are still far from having a comprehensive understanding of the origins and biology of the glia. The extent to which our knowledge is still in its early stages is reflected in the often inadequate nomenclature with which to discuss the complexity already believed to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Noble, M., Mayer-Proschel, M., and Miller, R. H. (2005) The oligodendrocyte. In Developmental Neurobiology (Rao, M. S., ed.).

    Google Scholar 

  2. Colello, R. J., Pott, U., and Schwab, M. E. (1994) The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathway. J. Neurosci. 14, 2594–2605.

    PubMed  CAS  Google Scholar 

  3. Griffiths, I., Klugmann, M., Anderson, T., et al. (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613.

    PubMed  CAS  Google Scholar 

  4. Trapp, B., Peterson, J., Ransohoff, R., Rudick, R., Mork, S., and Bo, L. (1998) Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285.

    PubMed  CAS  Google Scholar 

  5. Peles, E. and Salzer, J. L. (2000) Molecular domains of myelinated fibers. Curr. Opin. Neurobiol. 10, 558–565.

    PubMed  CAS  Google Scholar 

  6. Rasband, M. N. and Shrager, P. (2000) Ion channel sequestration in central nervous system axons. J. Physiol. (Lond.) 525, 63–73.

    CAS  Google Scholar 

  7. Kaplan, M. R., Meyer-Franke, A., Lambert, S., et al. (1997) Induction of sodium channel clustering by oligodendrocytes. Nature 386, 724–728.

    PubMed  CAS  Google Scholar 

  8. Kaplan, M. R., Cho, M.-H., Ullian, E. M., Isorn, L. L., Levinson, S. R., and Barres, B. A. (2001) Differential control of clustering of the sodium channels Nav1.2 and Nav1.6 at developing CNS nodes of Ranvier. Neuron 30, 105–119.

    PubMed  CAS  Google Scholar 

  9. Dai, X., Lercher, L. D., Yang, L., Shen, M., Black, I. B., and Dreyfus, C. F. (1997) Expression of neurotrophins by basal forebrain (BF) oligodendrocytes. Soc. Neurosci. Abstr. 23, 331.

    Google Scholar 

  10. Dougherty, K. D., Dreyfus, C. F., and Black, I. B. (2000) Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol. Dis. 7, 574–585.

    PubMed  CAS  Google Scholar 

  11. Dai, X., Lercher, L. D., Clinton, P. M., et al. (2003) The trophic role of oligodendrocytes in the basal forebrain. J. Neurosci. 23, 5846–5853.

    PubMed  CAS  Google Scholar 

  12. Krenz, N. R. and Weaver, L. C. (2000) Nerve growth factor in glia and inflammatory cells of the injured rat spinal cord. J. Neurochem. 74, 730–739.

    PubMed  CAS  Google Scholar 

  13. Vartanian, T., Corfas, G., Li, Y., Fischbach, G. D., and Stefansson, K. (1994) A role for the acetylcholine receptor-inducing protein ARIA in oligodendrocyte development. Proc. Natl. Acad. Sci. USA 91, 11626–11630.

    PubMed  CAS  Google Scholar 

  14. Raabe, T. D., Clive, D. R., Wen, D., and DeVries, G. H. (1997) Neonatal oligodendrocytes contain and secrete neuregulins in vitro. J. Neurochem. 69, 1859–1863.

    PubMed  CAS  Google Scholar 

  15. Cannella, B., Pitt, D., and Marchionni, M., Raine, C. S. (1999) Neuregulin and erbB receptor expression in normal and diseased human white matter. J. Neuroimmunol. 100, 233–242.

    PubMed  CAS  Google Scholar 

  16. Deadwyler, G. D., Pouly, S., Antel, J. P., and DeVries, G. H. (2000) Neuregulins and erbB receptor expression in adult human oligodendrocytes. Glia 32, 304–312.

    PubMed  CAS  Google Scholar 

  17. Strelau, J. and Unsicker, K. (1999) GDNF family members and their receptors: expression and functions in two oligodendroglial cell lines representing distinct stages of oligodendroglial development. Glia 26, 291–301.

    PubMed  CAS  Google Scholar 

  18. Nakamura, S., Todo, T., Motoi, Y., et al. (1999) Glial expression of fibroblast growth factor-9 in rat central nervous system. Glia 28, 53–65.

    PubMed  CAS  Google Scholar 

  19. McKinnon, R. D., Piras, G., Ida, J. A., Jr., and Dubois Dalcq, M. (1993) A role for TGF-beta in oligodendrocyte differentiation. J. Cell Biol. 121, 1397–1407.

    PubMed  CAS  Google Scholar 

  20. da Cunha, A., Jefferson, J. A., Jackson, R. W., and Vitkovic, L. (1993) Glial cell-specific mechanisms of TGF-beta 1 induction by IL-1 in cerebral cortex. J. Neuroimmunol. 42, 71–85.

    PubMed  Google Scholar 

  21. Raff, M. C., Miller, R. H., and Noble, M. (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature 303, 390–396.

    PubMed  CAS  Google Scholar 

  22. Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R., and Noble, M. (1983) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3, 1289–1300.

    PubMed  CAS  Google Scholar 

  23. Warrington, A. E., Barbarese, E., and Pfeiffer, S. E. (1993) Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J. Neurosci. Res. 34, 1–13.

    PubMed  CAS  Google Scholar 

  24. Groves, A. K., Barnett, S. C., Franklin, R. J., et al. (1993) Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362, 453–455.

    PubMed  CAS  Google Scholar 

  25. Utzschneider, D. A., Archer, D. R., Kocsis, J. D., Waxman, S. G., and Duncan, I. D. (1994) Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. Proc. Natl. Acad. Sci. USA 91, 53–57.

    PubMed  CAS  Google Scholar 

  26. Espinosa de los Monteros, A., Zhang, M., and De Vellis, J. (1993) O2A progenitor cells transplanted into the neonatal rat brain develop into oligodendrocytes but not astrocytes. Proc. Natl. Acad. Sci. USA 90, 50–54.

    PubMed  CAS  Google Scholar 

  27. Knapp, P. E. (1991) Studies of glial lineage and proliferation in vitro using an early marker for committed oligodendrocytes. J. Neurosci. Res. 30, 336–345.

    PubMed  CAS  Google Scholar 

  28. Noble, M., Murray, K., Stroobant, P., Waterfield, M. D., and Riddle, P. (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333 560–562.

    PubMed  CAS  Google Scholar 

  29. Bögler, O., Wren, D., Barnett, S. C., Land, H., and Noble, M. (1990) Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligo-dendrocyte-type-2 astrocytes (O-2A) progenitor cells. Proc. Natl. Acad. Sci. USA 87, 6368–6372.

    PubMed  Google Scholar 

  30. Barres, B. A., Raff, M. C., Gaese, F., Bartke, I., Dechant, G., and Barde, Y. A. (1994) A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367, 371–375.

    PubMed  CAS  Google Scholar 

  31. Barres, B. A., Schmidt, R., Sendnter, M., and Raff, M. C. (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118, 283–295.

    PubMed  CAS  Google Scholar 

  32. Mayer, M., Bhakoo, K., and Noble, M. (1994) Ciliary neurotrophic factor and leukemia inhibitory factor promote the generation, maturation and survival of oligodendrocytes in vitro. Development 120, 142–153.

    Google Scholar 

  33. Pringle, N., Collarini, E. J., Mosley, M. J., Heldin, C. H., Westermark, B., and Richardson, W. D. (1989) PDGF A chain homodimers drive proliferation of bipotential (O-2A) glial progenitor cells in the developing rat optic nerve. EMBO J. 8, 1049–1056.

    PubMed  CAS  Google Scholar 

  34. Richardson, W. D., Pringle, N., Mosley, M. J., Westermark, B., and Dubois Dalcq, M. (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53, 309–319.

    PubMed  CAS  Google Scholar 

  35. Smith, J., Ladi, E., Mayer-Pröschel, M., and Noble, M. (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc. Natl. Acad. Sci. USA 97, 10032–10037.

    PubMed  CAS  Google Scholar 

  36. Marin-Husstege, M., Muggironi, M., Liu, A., and Casaccia-Bonnefil, P. (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J. Neurosci. 22, 10333–10345.

    PubMed  CAS  Google Scholar 

  37. Deng, W., McKinnon, R. D., and Poretz, R. D. (2001) Lead exposure delays the differentiation of oligodendroglial progenitors in vitro, and at higher doses induces cell death. Toxicol. Appl. Pharmacol. 174, 235–244.

    PubMed  CAS  Google Scholar 

  38. Deng, W. and Poretz, R. D. (2002) Protein kinase C activation is required for the lead-induced inhibition of proliferation and differentiation of cultured oligodendroglial progenitor cells. Brain Res. 929, 87–95.

    PubMed  CAS  Google Scholar 

  39. Pringle, N. P. and Richardson, W. D. (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117, 525–533.

    PubMed  CAS  Google Scholar 

  40. Hall, A., Giese, N. A., and Richardson, W. D. (1996) Spinal cord oligodendrocytes develop from ventrally derived progenitor cells that express PDGF alpha receptors. Development 122, 4085–4094.

    PubMed  CAS  Google Scholar 

  41. Ikenaka, K., Kagawa, T., and Mikoshiba, K. (1992) Selective expression of DM-20, an alternatively spliced myelin proteolipid protein gene product, in developing nervous system and in nonglial cells. J. Neurochem. 58, 2248–53.

    PubMed  CAS  Google Scholar 

  42. Timsit, S., Martinez, S., Allinquant, B., Peyron, F., Puelles, L., and Zalc, B. (1995) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci. 15, 1012–1024.

    PubMed  CAS  Google Scholar 

  43. Sommer, I. and Schachner, M. (1981) Monoclonal antibody (O1–O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83, 311–327.

    PubMed  CAS  Google Scholar 

  44. Ono, K., Bansal, R., Payne, J., Rutishauser, U., and Miller, R. H. (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121, 1743–54.

    PubMed  CAS  Google Scholar 

  45. Orentas, D. M. and Miller, R. H. (1996) The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord. Dev. Biol. 177, 43–53.

    PubMed  CAS  Google Scholar 

  46. Orentas, D. and Miller, R. (1998) Regulation of oligodendrocyte development. Mol. Neurobiol. 18, 247–259.

    PubMed  CAS  Google Scholar 

  47. Ibarrola, N., Mayer-Proschel, M., Rodriguez-Pena, A., and Noble, M. (1996) Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro. Dev. Biol. 180, 1–21.

    PubMed  CAS  Google Scholar 

  48. Barres, B. A., Lazar, M. A., and Raff, M. C. (1994) A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120, 1097–1108.

    PubMed  CAS  Google Scholar 

  49. Temple, S. and Raff, M. C. (1986) Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell division. Cell 44, 773–779.

    PubMed  CAS  Google Scholar 

  50. Mayer, M., Bogler, O., and Noble, M. (1993) The inhibition of oligodendrocytic differentiation of O-2A progenitors caused by basic fibroblast growth factor is overridden by astrocytes. Glia 8, 12–19.

    PubMed  CAS  Google Scholar 

  51. Abney, E., Bartlett, P., and Raff, M. (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev. Biol. 83, 301–310.

    PubMed  CAS  Google Scholar 

  52. Miller, R. H., Ffrench Constant, C., and Raff, M. C. (1989) The macroglial cells of the rat optic nerve. Annu. Rev. Neurosci. 12, 517–534.

    PubMed  CAS  Google Scholar 

  53. Raff, M. C., Abney, E. R., and Fok-Seang, J. (1985) Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation. Cell 42, 61–69.

    PubMed  CAS  Google Scholar 

  54. Raff, M. C., Lillien, L. E., Richardson, W. D., Burne, J. F., and Noble, M. D. (1988) Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333, 562–565.

    PubMed  CAS  Google Scholar 

  55. Gao, F., Durand, B., and Raff, M. (1997) Oligodendrocyte precursor cells count time but not cell divisions before differentiation. Curr. Biol. 7, 152–155.

    PubMed  CAS  Google Scholar 

  56. Bogler, O., Wren, D., Barnett, S. C., Land, H., and Noble, M. (1990) Cooperation between two growth factors promotes extended selfrenewal and inhibits differentiation of oligo-dendrocyte-type-2 astrocytes (O-2A) progenitor cells. Proc. Natl. Acad. Sci. USA 87, 6368–6372.

    PubMed  CAS  Google Scholar 

  57. Wren, D., Wolswijk, G., and Noble, M. (1992) In vitro analysis of the origin and maintenance of O-2Aadult progenitor cells. J. Cell Biol. 116, 167–176.

    PubMed  CAS  Google Scholar 

  58. Gao, F. and Raff, M. (1997) Cell size control and a cell-intrinsic maturation program in proliferating oligodendrocyte precursor cells. J. Cell Biol. 138, 1367–1377.

    PubMed  CAS  Google Scholar 

  59. Tang, D. G., Tokumoto, Y. M., and Raff, M. C. (2000) Long-term culture of purified oligodendrocyte precursor cells: evidence for an intrinsic maturation program that plays out over months. J. Cell Biol. 148, 971–984.

    PubMed  CAS  Google Scholar 

  60. Rao, M. and Mayer-Pröschel, M. (1997) Glial restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol. 188, 48–63.

    PubMed  CAS  Google Scholar 

  61. Mayer-Pröschel, M., Kalyani, A., Mujtaba, T., and Rao, M. S. (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–85.

    PubMed  Google Scholar 

  62. Rao, M., Noble, M., and Mayer-Pröschel, M. (1998) A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl. Acad. Sci. USA 95, 3996–4001.

    PubMed  CAS  Google Scholar 

  63. Herrera, J., Yang, H., Zhang, S. C., et al. (2001) Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo. Exp. Neurol. 171, 11–21.

    PubMed  CAS  Google Scholar 

  64. Han, S. S., Kang, D. Y., Mujtaba, T., Rao, M. S., and Fischer, I. (2002) Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp. Neurol. 177, 360–375.

    PubMed  Google Scholar 

  65. Li, R., Thode, S., Zhou, J., et al. (2000) Motoneuron differentiation of immortalized human spinal cord cell lines. J. Neurosci. Res. 59, 342–352.

    PubMed  CAS  Google Scholar 

  66. Cao, Q. L., Howard, R. M., Dennison, J. B., and Whittemore, S. R. (2002) Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp. Neurol. 177, 349–359.

    PubMed  CAS  Google Scholar 

  67. Barres, B., Burne, J., Holtmann, B., Thoenen, H., Sendtner, M., and Raff, M. (1996) Ciliary neurotrophic factor enhances the rate of oligodendrocyte generation. Mol. Cell. Neurosci. 8, 146–156.

    CAS  Google Scholar 

  68. Marmur, R., Kessler, J. A., Zhu, G., Gokhan, S., and Mehler, M. F. (1998) Differentiation of oligodendroglial progenitors derived from cortical multipotent cells requires extrinsic signals including activation of gp130/LIFbeta receptors. J. Neurosci. 18, 9800–9811.

    PubMed  CAS  Google Scholar 

  69. Franklin, R. J. and Blakemore, W. F. (1995) Glial-cell transplantation and plasticity in the O-2A lineage—implications for CNS repair. Trends Neurosci. 18, 151–156.

    PubMed  CAS  Google Scholar 

  70. Liu, Y., Wu, Y., Lee, J. C., et al. (2002) Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia 40, 25–43.

    PubMed  Google Scholar 

  71. Gregori, N., Proschel, C., Noble, M., and Mayer-Pröschel, M. (2002) The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: Generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function. J. Neurosci. 22, 248–256.

    PubMed  CAS  Google Scholar 

  72. Mujtaba, J., Piper, D., Groves, A., Kalyani, A., Lucero, M., and Rao, M. S. (1999) Lineage restricted precursors can be isolated from both the mouse neural tube and cultures ES cells. Dev. Biol. 214, 113–127.

    PubMed  CAS  Google Scholar 

  73. Dietrich, J., Noble, M., and Mayer-Proschel, M. (2002) Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells. Glia 40, 65–77.

    PubMed  Google Scholar 

  74. Trotter, J. and Schachner, M. (1989) Cells positive for the O4 surface antigen isolated by cell sorting are able to differentiate into astrocytes or oligodendrocytes. Brain Res. Dev. Brain Res. 46, 115–122.

    PubMed  CAS  Google Scholar 

  75. Barnett, S. C., Hutchins, A. M., and Noble, M. (1993) Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev. Biol. 155, 337–350.

    PubMed  CAS  Google Scholar 

  76. Grzenkowski, M., Niehaus, A., and Trotter, J. (1999) Monoclonal antibody detects oligodendroglial cell surface protein exhibiting temporal regulation during development. Glia 28, 128–137.

    PubMed  CAS  Google Scholar 

  77. Gard, A. L. and Pfeiffer, S. E. (1993) Glial cell mitogens bFGF and PDGF differentially regulate development of O4+GalC-oligodendrocyte progenitors. Dev. Biol. 159, 618–630.

    PubMed  CAS  Google Scholar 

  78. Gard, A. L. and Pfeiffer, S. E. (1990) Two proliferative stages of the oligodendrocyte lineage (A2B5+O4-and O4+GalC-) under different mitogenic control. Neuron 5, 615–625.

    PubMed  CAS  Google Scholar 

  79. Gard, A. L., Williams, W. C., and Burrell, M. R. (1995) Oligodendroblasts distinguished from O-2A glial progenitors by surface phenotype (O4+GalC-) and response to cytokines using signal transducer LIFR beta. Dev. Biol. 167, 596–608.

    PubMed  CAS  Google Scholar 

  80. Boucher, K., Yakovlev, A., Mayer-Proschel, M., and Noble, M. (1999) A stochastic model of temporally regulated generation of oligodendrocytes in cell culture. Math. Biosci. 159, 47–78.

    PubMed  CAS  Google Scholar 

  81. Yakovlev, A. Y., Boucher, K., Mayer-Pröschel, M., and Noble, M. (1998) Quantitative insight into proliferation and differentiation of O-2A progenitor cells in vitro: the clock model revisited. Proc. Natl. Acad. Sci. USA 95, 14164–14167.

    PubMed  CAS  Google Scholar 

  82. Yakovlev, A., Mayer-Proschel, M., and Noble, M. (1998) A stochastic model of brain cell differentiation in tissue culture. J. Math. Biol. 37, 49–60.

    PubMed  CAS  Google Scholar 

  83. Zorin, A., Mayer-Proschel, M., Noble, M., and Yakovlev, A. Y. (2000) Estimation problems associated with stochastic modeling of proliferation and differentiation of O-2A progenitor cells in vitro. Math. Biosci. 167, 109–121.

    PubMed  CAS  Google Scholar 

  84. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., and McKay, R. D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.

    PubMed  CAS  Google Scholar 

  85. Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C., Savatier, P., and Samarut, J. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J.Cell Sci. 108, 3181–3188.

    PubMed  CAS  Google Scholar 

  86. Kalyani, A., Hobson, K., and Rao, M. S. (1997) Neuroepithelial stem cells: isolation, characterization and clonal analysis. Dev. Biol. 187, 203–226.

    Google Scholar 

  87. Laywell, E. D., Kukekov, V. G., and Steindler, D. A. (1999) Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp. Neurol. 156, 430–433.

    PubMed  CAS  Google Scholar 

  88. Raff, M. C., Williams, B. P., and Miller, R. H. (1984) The in vitro differentiation of a bipotential glial progenitor cell. EMBO J. 3, 1857–1864.

    PubMed  CAS  Google Scholar 

  89. Noble, M., Barnett, S. C., Bogler, O., Land, H., Wolswijk, G., and Wren, D. (1990) Control of division and differentiation in oligodendrocyte-type-2 astrocyte progenitor cells. Ciba Found. Symp. 150, 227–243.

    PubMed  CAS  Google Scholar 

  90. Noble, M. and Murray, K. (1984) Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. EMBO J. 3, 2243–2247.

    PubMed  CAS  Google Scholar 

  91. Wolswijk, G. and Noble, M. (1989) Identification of an adult-specific glial progenitor cell. Development 105, 387–400.

    PubMed  CAS  Google Scholar 

  92. Wolswijk, G., Riddle, P. N., and Noble, M. (1990) Coexistence of perinatal and adult forms of a glial progenitor cell during development of the rat optic nerve. Development 109, 691–698.

    PubMed  CAS  Google Scholar 

  93. Wolswijk, G., Riddle, P. N., and Noble, M. (1991) Platelet-derived growth factor is mitogenic for O-2A adult progenitor cells. Glia 4, 495–503.

    PubMed  CAS  Google Scholar 

  94. Wolswijk, G. and Noble, M. (1992) Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitor cells to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. J. Cell Biol. 118, 889–900.

    PubMed  CAS  Google Scholar 

  95. Shi, J., Marinovich, A., and Barres, B. (1998) Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci. 18, 4627–4636.

    PubMed  CAS  Google Scholar 

  96. Dawson, M. R., Levine, J. M., and Reynolds, R. (2000) NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J. Neurosci. Res. 61, 471–479.

    PubMed  CAS  Google Scholar 

  97. Levine, J. M., Stincone, F., and Lee, Y. S. (1993) Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7, 307–321.

    PubMed  CAS  Google Scholar 

  98. Horner, P. J., Power, A. E., Kempermann, G., et al. (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228.

    PubMed  CAS  Google Scholar 

  99. Levison, S. W., Young, G. M., and Goldman, J. E. (1999) Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J. Neurosci. Res. 57, 435–446.

    PubMed  CAS  Google Scholar 

  100. Keirstead, H. S. and Blakemore, W. F. (1997) Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J. Neuropathol. 56, 1191–1201.

    CAS  Google Scholar 

  101. Redwine, J. M. and Armstrong, R. C. (1998) In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J. Neurobiol. 37, 413–428.

    PubMed  CAS  Google Scholar 

  102. Carroll, W. M., Jennings, A. R., and Ironside, L. J. (1998) Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 121, 293–302.

    PubMed  Google Scholar 

  103. Keirstead, H., Hughes, H., and Blakemore, W. (1998) A quantifiable model of axonal regeneration in the demyelinated adult rat spinal cord. Exp. Neurol. 151, 303–313.

    PubMed  CAS  Google Scholar 

  104. Cenci di Bello, I., et al. (1999) Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. J. Neurocytol. 28, 365–381.

    Google Scholar 

  105. Gensert, J. M. and Goldman, J. E. (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203.

    PubMed  CAS  Google Scholar 

  106. Armstrong, R., Friedrich, V. L., Jr., Holmes, K. V., and Dubois Dalcq, M. (1990) In vitro analysis of the oligodendrocyte lineage in mice during demyelination and remyelination. J. Cell Biol. 111, 1183–95.

    PubMed  CAS  Google Scholar 

  107. Levine, J. M. and Reynolds, R. (1999) Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol. 160, 333–347.

    PubMed  CAS  Google Scholar 

  108. Watanabe, M., Toyama, Y., and Nishiyama, A. (2002) Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J. Neurosci. Res. 69, 826–836.

    PubMed  CAS  Google Scholar 

  109. Levine, J. M. (1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J. Neurosci. 14, 4716–4730.

    PubMed  CAS  Google Scholar 

  110. Nishiyama, A., et al. (1997) Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. J. Neurosci. Res. 48, 299–312.

    PubMed  CAS  Google Scholar 

  111. Robinson, S., Tani, M., Strieter, R., Ransohoff, R., and Miller, R. H. (1998) The chemokine growth-regulated oncogene-alpha promotes spinal cord oligodendrocyte precursor proliferation. J. Neurosci. 18, 10457–10463.

    PubMed  CAS  Google Scholar 

  112. Shields, S., Gilson, J., Blakemore, W., and Franklin, R. (1999) Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 28, 77–83.

    PubMed  CAS  Google Scholar 

  113. Fok-Seang, J., et al. (1995) Migration of oligodendrocyte precursors on astrocytes and meningeal cells. Dev. Biol. 171, 1–15.

    PubMed  CAS  Google Scholar 

  114. Schnaedelbach, O., et al. (2000) N-Cadherin influences migration of oligodendrocytes on astrocyte monolayers. Mol. Cell. Neurosci. 15, 288–302.

    Google Scholar 

  115. Asher, R. A., et al. (1999) Versican is up-regulated in CNS injury and is a product of O-2A lineage cells. Soc. Neurosci. Abstr. 25, 750.

    Google Scholar 

  116. Asher, R. A., et al. (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 20, 2427–2438.

    PubMed  CAS  Google Scholar 

  117. Jaworski, D. M., et al. (1999) Intracranial injury acutely induces the expression of the secreted isoform of the CNS-specific hyaluronan-binding protein BEHAB brevican. Exp. Neurol. 157, 327–337.

    PubMed  CAS  Google Scholar 

  118. Dou, C. L. and Levine, J. M. (1994) Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J. Neurosci. 14, 7616–7628.

    PubMed  CAS  Google Scholar 

  119. Fawcett, J. W. and Asher, R. A. (1999) The glial scar and CNS repair. Brain Res. Bull. 49, 377–391.

    PubMed  CAS  Google Scholar 

  120. Niederost, B. P., et al. (1999) Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J. Neurosci. 19, 8979–8989.

    PubMed  CAS  Google Scholar 

  121. Bergles, D. E., et al. (2000) Glutaminergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191.

    PubMed  CAS  Google Scholar 

  122. Nishiyama, A., Chang, A., and Trapp, B. D. (1999) NG2+ glial cells: a novel glial cell population in the adult brain. J. Neuropathol. Exp. Neurol. 58, 1113–1124.

    PubMed  CAS  Google Scholar 

  123. Chang, A., et al. (2000) NG2+ oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 20, 6404–6412.

    PubMed  CAS  Google Scholar 

  124. Wolswijk, G. (2000) Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 123, 105–115.

    PubMed  Google Scholar 

  125. Barres, B. A. and Raff, M. C. (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260.

    PubMed  CAS  Google Scholar 

  126. Belachew, S., Chittajallu, R., Aguirre, A. A., et al. (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 1–19.

    Google Scholar 

  127. Foran, D. R. and Peterson, A. C. (1992) Myelin acquisition in the central nervous system of the mouse revealed by an MBP-LacZ transgene. J. Neurosci. 12, 4890–4897.

    PubMed  CAS  Google Scholar 

  128. Kinney, H. C., Brody, B. A., Kloman, A. S., and Gilles, F. H. (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47, 217–234.

    PubMed  CAS  Google Scholar 

  129. Macklin, W. B. and Weill, C. L. (1985) Appearance of myelin proteins during development in the chick central nervous system. Dev. Neurosci. 7, 170–178.

    PubMed  CAS  Google Scholar 

  130. Skoff, R. P., Toland, D., and Nast, E. (1980) Pattern of myelination and distribution of neuroglial cells along the developing optic system of the rat and rabbit. J. Comp. Neurol. 191, 237–253.

    PubMed  CAS  Google Scholar 

  131. Benes, F. M., Turtle, M., Khan, Y., and Farol, P. (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence and adulthood. Arch. Gen. Psychiatry 51, 477–484.

    PubMed  CAS  Google Scholar 

  132. Yakovlev, P. L. and Lecours, A. R. (1967) The myelogenetic cycles of regional maturation of the brain. In Regional Development of the Brain in Early Life (Minkowski, A., et al., eds.), Blackwell, Oxford, pp. 3–70.

    Google Scholar 

  133. Power, J., Mayer-Proschel, M., Smith, J., and Noble, M. (2002) Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev. Biol. 245, 362–375.

    PubMed  CAS  Google Scholar 

  134. Small, R. K., Riddle, P., and Noble, M. (1987) Evidence for migration of oligodendro-cyte-type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328, 155–157.

    PubMed  CAS  Google Scholar 

  135. Stensaas, L. J. and Stensaas, S. S. (1968) Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. 11. Electron microscopy. Zeit. Zellforsch. Mikroskop. Anat. 86, 184–213.

    CAS  Google Scholar 

  136. Remahl, S. and Hildebrand, C. (1990) Relation between axons and oligodendroglial cells during myelination. 1. The glial unit. J. Neurocytol. 19, 313–328.

    PubMed  CAS  Google Scholar 

  137. Bjartmar, C., Hildebrand, C., and Loinder, K. (1968) Morphological heterogeneity of rat oligodendrocytes: electron microscopic studies on serial sections. Glia 11, 235–244.

    Google Scholar 

  138. Butt, A. M., Ibrahim, M., Gregson, N., and Berry, M. (1998) Differential expression of the Land S isoforms of myelin associated glycoprotein (MAG) in oligodendrocyte unit phenotypes in the adult anterior medullary velum. J. Neurocytol. 27, 271–280.

    PubMed  CAS  Google Scholar 

  139. Butt, A. M., Ibrahim, M., and Berry, M. (1997) The relationship between developing oligodendrocyte units and maturing axons during myelinogenesis in the anterior velum of neonatal rats. J. Neurocytol. 26, 327–338.

    PubMed  CAS  Google Scholar 

  140. Butt, A. M., Ibrahim, M., Ruge, F. M., and Berry, M. (1995) Biochemical subtypes of oligodendrocytes in the anterior velum of the rat revealed by the monoclonal antibody Rip. Glia 14, 185–197.

    PubMed  CAS  Google Scholar 

  141. Fanarraga, M. L., Griffiths, I. R., Zhao, M., and Duncan, I. D. (1998) Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. J. Comp. Neurol. 399, 94–100.

    PubMed  CAS  Google Scholar 

  142. Spassky, N., Olivier, C., Perez-Villegas, E., et al. (2000) Single or multiple oligodendroglial lineages: a controversy. Glia 29, 143–148.

    PubMed  CAS  Google Scholar 

  143. Mallon, B. S., Shick, H. E., Kidd, G. J., and Macklin, W. B. (2002) Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J. Neurosci. 22, 876–885.

    PubMed  CAS  Google Scholar 

  144. Spassky, N., Goujet-Zalc, C., Parmantier, E., et al. (1998) Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343.

    PubMed  CAS  Google Scholar 

  145. Nery, S., Wichterle, H., and Fishell, G. (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540.

    PubMed  CAS  Google Scholar 

  146. Zhou, Q., Wang, S., and Anderson, D. J. (2000) Identification of a novel family of oligodendrocyte lineage-specific basis helix-loop-helix transcription factors. Neuron 25, 331–343.

    PubMed  CAS  Google Scholar 

  147. Lu, Q. R., Yuk, D., Alberta, J. A., et al. (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329.

    PubMed  CAS  Google Scholar 

  148. He, W., Ingraham, C., Rising, L., Goderie, S., and Temple, S. (2001) Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862.

    PubMed  CAS  Google Scholar 

  149. Yung, S. Y., Gokhan, S., Jurcsak, J., Molero, A. E., Abrajano, J. J., and Mehler, M. F. (2002) Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc. Natl. Acad. Sci. USA 99, 16273–16278.

    PubMed  CAS  Google Scholar 

  150. Lavdas, A. A., Grigoriou, M., Pachnis, V., and Parnavelas, J. G. (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888.

    PubMed  CAS  Google Scholar 

  151. Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G., and Alvarez-Buylla, A. (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat. Neurosci. 2, 461–466.

    PubMed  CAS  Google Scholar 

  152. Anderson, S. A., Marin, O., Horn, C., Jennings, K., and Rubenstein, J. L. (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363.

    PubMed  CAS  Google Scholar 

  153. Marshall, C. A. and Goldman, J. E. (2002) Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. J. Neurosci. 22, 9821–9830.

    PubMed  CAS  Google Scholar 

  154. Qian, X., Davis, A. A., Goderie, S. K., and Temple, S. (1997) FGF2 Concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93.

    PubMed  CAS  Google Scholar 

  155. Tekki-Kessaris, N., Woodruff, R., Hall, A. C., et al. (2001) Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128, 2545–2554.

    PubMed  CAS  Google Scholar 

  156. Mekki-Dauriac, S., Agius, E., Kan, P., and Cochard, P. (2002) Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129, 5117–5130.

    PubMed  CAS  Google Scholar 

  157. Pringle, N. P., Wei-Ping, Y., Guthrie, S., et al. (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and Sonic Hedgehog. Dev. Biol. 177, 30–42.

    PubMed  CAS  Google Scholar 

  158. Richardson, W. D., Smith, J. K., Sun, T., Pringle, N. P., Hall, A. C., and Woodruff, R. (2000) Oligodendrocyte lineage and the motor neuron connection. Glia 29, 136–142.

    PubMed  CAS  Google Scholar 

  159. Richardson, W. D., Pringle, N. P., Yu, W.-P., and Hall, A. C. (1997) Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev. Neurosci. 19, 54–64.

    Google Scholar 

  160. Orentas, D. M., Hayers, J. E., Dyer, K. L., and Miller, R. H. (1999) Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126, 2419–2429.

    PubMed  CAS  Google Scholar 

  161. Lu, Q. R., Sun, T., Zhu, Z., et al. (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86.

    PubMed  CAS  Google Scholar 

  162. Takebayashi, H., Nabeshima, Y., Yoshida, S., et al. (2002) The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol. 12, 1157–1163.

    PubMed  CAS  Google Scholar 

  163. Zhou, Q. and Anderson, D. J. (2002) The bHLH transcription factors olig2 and olig1 couple neuronal and glial subtype specification. Cell 109, 61–73.

    PubMed  CAS  Google Scholar 

  164. Rowitch, D. H., Lu, R. Q., Kessaris, N., and Richardson, W. D. (2002) An ‘oligarchy’ rules neural development. Trends Neurosci. 25, 417–422.

    PubMed  CAS  Google Scholar 

  165. Sauvageot, C. M. and Stiles, C. D. (2002) Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol. 12, 244–249.

    PubMed  CAS  Google Scholar 

  166. Corbin, J. G., Gaiano, N., Machold, R. P., Langston, A., and Fishell, G. (2000) The Gsh2 homeodomain gene controls multiple aspects of telencephalic development. Development 127, 5007–5020.

    PubMed  CAS  Google Scholar 

  167. Zhu, G., Mehler, M. F., Zhao, J., Yu Yung, S., and Kessler, J. A. (1999) Sonic hedgehog and BMP2 exert opposing actions on proliferation and differentiation of embryonic neural progenitor cells. Dev. Biol. 215, 118–129.

    PubMed  CAS  Google Scholar 

  168. Thomas, J. L., Spassky, N., Perez Villegas, E. M., et al. (2000) Spatiotemporal development of oligodendrocytes in the embryonic brain. J. Neurosci. Res. 59, 471–476.

    PubMed  CAS  Google Scholar 

  169. Briscoe, J. and Ericson, J. (1999) The specification of neuronal identity by graded Sonic Hedgehog signalling. Semin. Cell Dev. Biol. 10, 353–362.

    PubMed  CAS  Google Scholar 

  170. Miller, R. H., Hayes, J. E., Dyer, K. L., and Sussman, C. R. (1999) Mechanisms of oligodendrocyte commitment in the vertebrate CNS. Int. J. Dev. Neurosci. 17, 753–763.

    PubMed  CAS  Google Scholar 

  171. Zhou, Q., Choi, G., and Anderson, D. J. (2001) The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with nkx2. 2. Neuron 31, 791–807.

    PubMed  CAS  Google Scholar 

  172. Davies, J. E. and Miller, R. H. (2001) Local sonic hedgehog signaling regulates oligodendrocyte precursor appearance in multiple ventricular domains in the chick metencephalon. Dev. Biol. 233, 513–525.

    PubMed  CAS  Google Scholar 

  173. Nery, S., Wichterle, H., and Fishell, G. (2001) Sonic hedghog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540.

    PubMed  CAS  Google Scholar 

  174. Mabie, P., Mehler, M., Marmur, R., Papavasiliou, A., Song, Q., and Kessler, J. (1997) Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J. Neurosci. 17, 4112–4120.

    PubMed  CAS  Google Scholar 

  175. Mehler, M. F., Mabie, P. C., Zhu, G., Gokhan, S., and Kessler, J. A. (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev. Neurosci. 22, 74–85.

    PubMed  CAS  Google Scholar 

  176. Mizuguchi, R., Sugimori, M., Takebayashi, H., et al. (2001) Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771.

    PubMed  CAS  Google Scholar 

  177. Novitch, B. G., Chen, A. I., and Jessell, T. M. (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789.

    PubMed  CAS  Google Scholar 

  178. Sun, T., Echelard, Y., Lu, R., et al. (2001) Olig bHLH proteins interact with homeodomain proteins to regulate cell fate acquisition in progenitors of the ventral neural tube. Curr. Biol. 11, 1413–1420.

    PubMed  CAS  Google Scholar 

  179. Mabie, P. C., Mehler, M. F., and Kessler, J. A. (1999) Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J. Neurosci. 19, 7077–7088.

    PubMed  CAS  Google Scholar 

  180. Li, W., Cogswell, C. A., and LoTurco, J. J. (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J. Neurosci. 18, 8853–8862.

    PubMed  CAS  Google Scholar 

  181. Gross, R. E., Mehler, M. F., Mabie, P. C., Zang, Z., Santschi, L., and Kessler, J. A. (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606.

    PubMed  CAS  Google Scholar 

  182. Grinspan, J. B., Edell, E., Carpio, D. F., et al. (2000) Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J. Neurobiol. 43, 1–17.

    PubMed  CAS  Google Scholar 

  183. Nakashima, K., Takizawa, T., Ochiai, W., et al. (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc. Natl. Acad. Sci. USA 98, 5868–5873.

    PubMed  CAS  Google Scholar 

  184. Gomes, W. A., Mehler, M. F., and Kessler, J. A. (2003) Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev. Biol. 255, 164–177.

    PubMed  CAS  Google Scholar 

  185. Noble, M., Arhin, A., Gass, D., and Mayer-Proschel, M. (2003) The cortical ancestry of oligodendrocytes: Common principles and novel features. Dev. Neurosci. 25, 217–233.

    PubMed  CAS  Google Scholar 

  186. Doetsch, F., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061.

    PubMed  CAS  Google Scholar 

  187. Weickert, C. S., Webster, M. J., Colvin, S. M., et al. (2000) Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J. Comp. Neurol. 423, 359–372.

    PubMed  CAS  Google Scholar 

  188. Fok-Seang, J. and Miller, R. H. (1994) Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord. J. Neurosci. Res. 37, 219–235.

    PubMed  CAS  Google Scholar 

  189. Fok-Seang, J. and Miller, H. R. (1992) Astrocyte precursors in neonatal rat spinal cord cultures. J. Neurosci. 12, 2751–2764.

    PubMed  CAS  Google Scholar 

  190. Mi, H. and Barres, B. A. (1999) Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J. Neurosci. 19, 1049–1061.

    PubMed  CAS  Google Scholar 

  191. Kondo, T. and Raff, M. (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757.

    PubMed  CAS  Google Scholar 

  192. Ben-Hur, T., Rogister, B., Murray, K., Rougon, G., and Dubois-Dalcq, M. (1998) Growth and fate of PSA-NCAM+ precursors of the postnatal brain. J. Neurosci. 18, 5777–5788.

    PubMed  CAS  Google Scholar 

  193. Grinspan, J. B., Stern, J. L., Pustilnik, S. M., and Pleasure, D. (1990) Cerebral white matter contains PDGF-responsive precursors to O-2A cells. J. Neurosci. 10, 1866–1873.

    PubMed  CAS  Google Scholar 

  194. Keirstead, H., Ben-Hur, T., Rogister, B., O’Leary, M., Dubois-Dalcq, M., and Blakemore, W. (1999) Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J. Neurosci. 19, 7529–7536.

    PubMed  CAS  Google Scholar 

  195. Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C., and Van Evercooren, A. B. (1999) Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366.

    PubMed  CAS  Google Scholar 

  196. Vitry, S., Avellana-Adalid, V., Hardy, R., Lachapelle, F., and Baron-Van Evercooren, A. (1999) Mouse oligospheres: from pre-progenitors to functional oligodendrocytes. J. Neurosci. Res. 58, 735–751.

    PubMed  CAS  Google Scholar 

  197. Zhang, S. C., Lipsitz, D., and Duncan, I. D. (1998) Self-renewing canine oligodendroglial progenitor expanded as oligospheres. J. Neurosci. Res. 54, 181–190.

    PubMed  CAS  Google Scholar 

  198. Carpenter, M., Cui, X., Hu, Z., et al. (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265–278.

    PubMed  CAS  Google Scholar 

  199. Hammang, J., Archer, D., and Duncan, I. (1997) Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp. Neurol. 147, 84–95.

    PubMed  CAS  Google Scholar 

  200. Milward, E., Lundberg, C., Ge, B., Lipsitz, D., Zhao, M., and Duncan, I. (1997) Isolation and transplantation of multipotential populations of epidermal growth factor-responsive, neural progenitor cells from the canine brain. J. Neurosci. Res. 50, 862–871.

    PubMed  CAS  Google Scholar 

  201. Svendsen, C., Caldwell, M., and Ostenfeld, T. (1999) Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9, 499–513.

    PubMed  CAS  Google Scholar 

  202. Vescovi, A., Gritti, A., Galli, R., and Parati, E. (1999) Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J. Neurotrauma 16, 689–693.

    PubMed  CAS  Google Scholar 

  203. Vescovi, A., Parati, E., Gritti, A., et al. (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83.

    PubMed  CAS  Google Scholar 

  204. Vescovi, A. and Snyder, E. (1999) Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol. 9, 569–598.

    PubMed  CAS  Google Scholar 

  205. Roots, B. I. (1993) The evolution of myelin. Adv. Neural Sci. 1, 187–213.

    Google Scholar 

  206. Davis, A. D., Weatherby, T. M., Hartline, D. K., and Lenz, P. H. (1999) Myelin-like sheaths in copepod axons. Nature 398, 571.

    PubMed  CAS  Google Scholar 

  207. Takebayashi, H., Yoshida, S., Sugimori, M., et al. (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev. 99, 143–148.

    PubMed  CAS  Google Scholar 

  208. Zhou, Q., Wang, S., and Anderson, D. J. (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25, 331–343.

    PubMed  CAS  Google Scholar 

  209. Park, H. C., Mehta, A., Richardson, J. S., and Appel, B. (2002) Olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol. 248, 356–368.

    PubMed  CAS  Google Scholar 

  210. Noble, M., Pröschel, C., and Mayer-Proschel, M. (2004) Getting a GR(i)P on oligodendrocyte development. Dev. Biol. 265, 33–52.

    PubMed  CAS  Google Scholar 

  211. Liu, Y. and Rao, M. S. (2003) Olig genes are expressed In a heterogeneous population of precursor cells in the developing spinal cord. Glia 45, 67–74.

    Google Scholar 

  212. Leber, S. M., Breedlove, S. M., and Sanes, J. R. (1990) Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord. J. Neurosci. 10, 2451–2462.

    PubMed  CAS  Google Scholar 

  213. Pringle, N. and Richardson, W. (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117, 525–533.

    PubMed  CAS  Google Scholar 

  214. Stockard, C. R. (1921) Developmental rate and structural expression in experimental study of twins, ‘double monsters’ and single deformities, and the interaction among embryonic organs during their origin and development. Am. J. Anat. 28, 115–277.

    Google Scholar 

  215. Davison, A. N. and Dobbing, J. (1966) Myelination as a vulnerable period in brain development. Br. Med. Bull. 22, 40–44.

    PubMed  CAS  Google Scholar 

  216. Delange, F. (1994) The disorders induced by iodine deficiency. Thyroid 4, 107–128.

    PubMed  CAS  Google Scholar 

  217. Lazarus, J. H. (1999) Thyroid hormone and intellectual development: a clinician’s view. Thyroid 9, 659–660.

    PubMed  CAS  Google Scholar 

  218. Pop, V. J., Kuijpens, J. L., van Baar, A. L., et al. (1999) Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin. Endocrinol. 50, 149–155.

    CAS  Google Scholar 

  219. Man, E. B., Brown, J. F., and Scrunian, S. A. (1991) Maternal hypothyroxinemia: psychoneurological deficits of progeny. Ann. Clin. Lab. Sci. 21, 227–239.

    PubMed  CAS  Google Scholar 

  220. Haddow, J. E., Glenn, E., Palomaki, B. S., et al. (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341, 549–555.

    PubMed  CAS  Google Scholar 

  221. Legrand, J. (1986) Thyroid hormone effects on growth and development. In Thyroid Hormone Metabolism (Henneman, G., ed.), Marcel Dekker, New York, pp. 503–534.

    Google Scholar 

  222. Balazs, R., Kovacs, S., Cocks, W. A., Johnson, A. L., and Eayrs, J. T. (1971) Effect of thyroid hormone on the biochemical maturation of rat brain: postnatal cell formation. Brain Res. 25, 555–570.

    PubMed  CAS  Google Scholar 

  223. Balazs, R., Brooksbank, B. W., Davison, A. N., Eayrs, J. T., and Wilson, D. A. (1969) The effect of neonatal thyroidectomy on myelination in the rat brain. Brain Res. 15, 219–232.

    PubMed  CAS  Google Scholar 

  224. Rosman, N. P., Malone, M. J., Helfenstein, M., and Kraft, E. (1972) The effect of thyroid deficiency on myelination of brain. Neurology 22, 99–106.

    PubMed  CAS  Google Scholar 

  225. Eayrs, J. T. and Taylor, S. H. (1951) The effect of thyroid deficiency induced by methyl-thiouracil on the maturation of the central nervous system. J. Anat. 85, 350–358.

    PubMed  CAS  Google Scholar 

  226. Eayrs, J. T. (1955) The cerebral cortex of normal and hypothyroid rats. Acta Anat. 25, 160–183.

    PubMed  CAS  Google Scholar 

  227. Eayrs, J. T. and Horne, G. (1955) The development of cerebral cortex in hypothyroid and starved rats. Anat. Rec. 121, 53–61.

    PubMed  CAS  Google Scholar 

  228. Nicholson, J. L. and Altman, J. (1972) The effects of early hypo-and hyperthyroidism on the development of the rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 44, 13–23.

    PubMed  CAS  Google Scholar 

  229. Eayrs, J. T. (1971) Thyroid and developing brain: anatomical and behavioural effects. In Hormones in Development (Hamburgh, M. and Barrington, E., eds.), Appleton-Century-Crofts, New York.

    Google Scholar 

  230. Noguchi, T., Sugisaki, T., Satoh, I., and Kudo, M. (1985) Partial restoration of cerebral myelination of the congenitally hypothyroid mouse by parenteral or breast milk administration of thyroxine. J. Neurochem. 45, 1419–1426.

    PubMed  CAS  Google Scholar 

  231. Munoz, A., Rodriguez-Pena, A., Perez-Castillo, A., Ferreiro, B., Sutcliffe, J. G., and Bernal, J. (1991) Effects of neonatal hypothyroidism on rat brain gene expression. Mol. Endocrinol. 5, 273–280.

    PubMed  CAS  Google Scholar 

  232. Bernal, J. and Nunez, J. (1995) Thyroid hormones and brain development. Eur. J. Endocrinol. 133, 390–398.

    PubMed  CAS  Google Scholar 

  233. Ibarrola, N. and Rodriguez-Pena, A. (1997) Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res. 752, 285–293.

    PubMed  CAS  Google Scholar 

  234. Marta, C. B., Adamo, A. M., Soto, E. F., and Pasquini, J. M. (1998) Sustained neonatal hyperthyroidism in the rat affects myelination in the central nervous system. J. Neurosci. Res. 53, 251–259.

    PubMed  CAS  Google Scholar 

  235. Chan, S. and Kilby, M. D. (2000) Thyroid hormone and central nervous system development. J. Endocrinol. 165, 1–8.

    PubMed  CAS  Google Scholar 

  236. Pharoah, P., Buttfield, I. H., and Hotzel, B. S. (1971) Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet i, 308–310.

    Google Scholar 

  237. Cao, X. Y., X. M. J., Dou, Z. H., et al. (1994) Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N. Engl. J. Med. 331, 1739–1744.

    PubMed  CAS  Google Scholar 

  238. Klein, R. Z., Mitchell, M. L., and Foley, T. P. J. (1996) Hypothyroidism in infants and children. In The Thyroid (Braverman, L. E. and Utiger, R. D., eds.), Lippincott Williams & Wilkins, New York, pp. 984–989.

    Google Scholar 

  239. Klein, A. H., Meltzer, S., and Kenny, F. M. (1972) Improved prognosis in congenital hypothyroidism treated before age three months. J. Pediatr. 81, 912–920.

    PubMed  CAS  Google Scholar 

  240. Gao, F., Apperly, J., and Raff, M. (1998) Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells. Dev. Biol. 197, 54–66.

    PubMed  CAS  Google Scholar 

  241. Ahlgren, S., Wallace, H., Bishop, J., Neophytou, C., and Raff, M. (1997) Effects of thyroid hormone on embryonic oligodendrocyte precursor cell development in vivo and in vitro. Mol. Cell Neurosci. 9, 420–432.

    PubMed  CAS  Google Scholar 

  242. Tosic, M., Torch, S., Comte, V., Dolivo, M., Honegger, P., and Matthieu, J. M. (1992) Triiodothyronine has diverse and multiple stimulating effects on expression of the major myelin protein genes. J. Neurochem. 59, 1770–1777.

    PubMed  CAS  Google Scholar 

  243. Pombo, P. M., Barettino, D., Ibarrola, N., Vega, S., and Rodriguez-Pena, A. (1999) Stimulation of the myelin basic protein gene expression by 9-cis-retinoic acid and thyroid hormone: activation in the context of its native promoter. Mol. Brain. Res. 64, 92–100.

    PubMed  CAS  Google Scholar 

  244. Pombo, P. M., Ibarrola, N., Alonso, M. A., and Rodriguez-Pena, A. (1998) Thyroid hormone regulates the expression of the MAL proteolipid, a component of glycolipid-enriched membranes, in neonatal rat brain. J. Neurosci. Res. 52, 584–590.

    PubMed  CAS  Google Scholar 

  245. Jones, S. A., Jolson, D. M., Cuta, K. K., Mariash, C. N., and Anderson, G. W. (2003) Triiodothyronine is a survival factor for developing oligodendrocytes. Mol. Cell. Endocrinol. 199, 49–60.

    PubMed  CAS  Google Scholar 

  246. Oppenheimer, J. H. and Schwartz, H. L. (1997) Molecular basis of thyroid hormone-dependent brain development. Endocr. Rev. 18, 462–475.

    PubMed  CAS  Google Scholar 

  247. Yip, R. (2002) Prevention and control of iron deficiency: policy and strategy issues. J. Nutr. 132, 802S–805S.

    PubMed  CAS  Google Scholar 

  248. Beard, J. L. (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 131, 568S–579S.

    PubMed  CAS  Google Scholar 

  249. de Regnier, R. A., Nelson, C. A., Thomas, K., Wewerka, S., and Georgieff, M. K. (2000) Neurophysiologic evaluation of auditory recognition memory in healthy newborn infants and infants of diabetic mothers. J. Pediatr. 137, 777–784.

    Google Scholar 

  250. Nelson, C. A., Wewerka, S., Thomas, K., Tribby-Walbridge, S., de Regnier, R. A., and Georgieff, M. K. (2000) Neurocognitive sequelae of infants of diabetic mothers. Behav. Neurosci. 114, 950–956.

    PubMed  CAS  Google Scholar 

  251. Tamura, T., Goldberg, R. L., Hou, J., et al. (2002) Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J. Pediatr. 140, 165–170.

    PubMed  CAS  Google Scholar 

  252. Grantham-McGregor, S. and Ani, C. (2001) A review of studies on the effect of iron deficiency on cognitive development in children. J. Nutr. 131, 649S–668S.

    PubMed  CAS  Google Scholar 

  253. Yager, J. Y. and Hartfield, D. S. (2002) Neurological manifestations of iron deficiency in childhood. Pediatr. Neurol. 27, 85–92.

    PubMed  Google Scholar 

  254. Dobbing, J. (1990) Brain, Behavior and Iron in the Infant Diet. Springer-Verlag, London.

    Google Scholar 

  255. Honig, A. and Oski, F. (1978) Developmental scores of the iron deficient infants and the effect of therapy. Infant Behav. Dev. 1, 168–176.

    Google Scholar 

  256. Pollitt, E. and Leibel, R. (1976) Iron deficiency and behavior. J. Pediatr. 88, 732–781.

    Google Scholar 

  257. Yu, G., Steinkirchner, T., Rao, G., and Larkin, E. C. (1986) Effect of prenatal iron deficiency on myelination in rat pups. Am. J. Pathol. 125, 620–624.

    PubMed  CAS  Google Scholar 

  258. Lozoff, B. (2000) Perinatal iron deficiency and the developing brain. Pediatr. Res. 48, 137–139.

    PubMed  CAS  Google Scholar 

  259. Connor, J. R. and Menzies, S. L. (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17, 83–93.

    PubMed  CAS  Google Scholar 

  260. Sacco, L. M., Caulfield, L. E., Zavaleta, N., and Retamozo, L. (1999) Usual mineral intakes of Peruvian women during pregnancy. FASEB J. 13, A250 (Abstr).

    Google Scholar 

  261. O’Brien, K. O., Zavaleta, N., Abrams, S. A., and Caulfield, L. E. (2003) Maternal iron status influences iron transfer to the fetus during the third trimester of pregnancy. Am. J. Clin. Nutr. 77, 924–930.

    PubMed  CAS  Google Scholar 

  262. Looker, A. C., Dallman, P. R., Carroll, M. D., Gunter, M. T., and Johnson, C. L. (1997) Prevalence of iron deficiency in the United States. JAMA 277, 973–976.

    PubMed  CAS  Google Scholar 

  263. Hecox, K. and Burkard, R. (1982) Developmental dependencies of the human brainstem auditory evoked response. Ann. NY Acad. Sci. 388, 538–556.

    PubMed  CAS  Google Scholar 

  264. Jiang, Z. D. (1995) Maturation of the auditory brainstem in low risk-preterm infants: a comparison with age-matched full term infants up to 6 years. Early Hum. Dev. 42, 49–65.

    PubMed  CAS  Google Scholar 

  265. Salamy, A. and McKean, C. M. (1976) Postnatal development of human brainstem potentials during the first year of life. Electroencephalogr. Clin. Neurophysiol. 40, 418–426.

    PubMed  CAS  Google Scholar 

  266. Roncagliolo, M., Garrido, M., Walter, T., Peirano, P., and Lozoff, B. (1998) Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: delayed maturation of auditory brainstem responses. Am. J. Clin. Nutr. 68, 683–690.

    PubMed  CAS  Google Scholar 

  267. deUngria, M., Rao, R., Wobken, J. D., Luciana, M., Nelson, C. A., and Georgieff, M. K. (2000) Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr. Res. 48, 169–176.

    PubMed  CAS  Google Scholar 

  268. Felt, B. T. and Lozoff, B. (1996) Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development. J. Nutr. 126, 693–701.

    PubMed  CAS  Google Scholar 

  269. Rao, R., Tkac, I., Townsend, E. L., Gruetter, R., and Georgieff, M. K. (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J. Nutr. 133, 3215–3221.

    PubMed  CAS  Google Scholar 

  270. Erikson, K. M., Pinero, D. J., Connor, J. R., and Beard, J. L. (1997) Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats. J. Nutr. 127, 2030–2038.

    PubMed  CAS  Google Scholar 

  271. Larkin, E. C. and Rao, G. A. (1990) Importance of fetal and neonatal iron: Adequacy for normal development of central nervous system. In Brain, Behavior and Iron in the Infant Diet (Dobbing, J., ed.), Springer-Verlag, London, pp. 43–63.

    Google Scholar 

  272. Morath, D. J. and Mayer-Proschel, M. (2001) Iron modulates the differentiation of a distinct population of glial precursor cells into oligodendrocytes. Dev. Biol. 237, 232–243.

    PubMed  CAS  Google Scholar 

  273. Morath, D. J. and Mayer-Proschel, M. (2002) Iron deficiency during embryogenesis and consequences for oligodendrocyte generation in vivo. Dev. Neurosci. 24, 197–207.

    PubMed  CAS  Google Scholar 

  274. Beard, J. L., Erikson, K. M., and Byron, C. J. (2003) Neonatal iron deficiency results in irreversible changes in dopamine function in rats. J. Nutr. 133, 1174–1179.

    PubMed  CAS  Google Scholar 

  275. Dallman, P. R. (1986) Biochemical basis for the manifestations of iron deficiency. Annu. Rev. Nutr. 6, 13–40.

    PubMed  CAS  Google Scholar 

  276. Harthoorn-Lasthuizen, E. J., Lindemans, J., and Langenhuijsen, M. M. (2001) Does iron-deficient erythropoiesis in pregnancy influence fetal iron supply? Acta Obstet. Gynecol. Scand. 80, 392–396.

    PubMed  CAS  Google Scholar 

  277. Wong, C. T. and Saha, N. (1990) Inter-relationships of storage iron in the mother, the placenta and the newborn. Acta Obstet. Gynecol. Scand. 69, 613–616.

    PubMed  CAS  Google Scholar 

  278. Lao, T. T., Loong, E. P., Chin, R. K., Lam, C. W., and Lam, Y. M. (1991) Relationship between newborn and maternal iron status and haematological indices. Biol. Neonate 60, 303–307.

    PubMed  CAS  Google Scholar 

  279. Allen, L. H. (1997) Pregnancy and iron deficiency: unresolved issues. Nutr. Rev. 55, 91–101.

    PubMed  CAS  Google Scholar 

  280. Halvorsen, S. (2000) Iron balance between mother and infant during pregnancy and breastfeeding. Acta Paediatr. 89, 625–627.

    PubMed  CAS  Google Scholar 

  281. Georgieff, M. K., Mills, M. M., Gordon, K., and Wobken, J. D. (1995) Reduced neonatal liver iron concentrations after uteroplacental insufficiency. J. Pediatr. 127, 308–311.

    PubMed  CAS  Google Scholar 

  282. Choi, J. W., Kim, C. S., and Pai, S. H. (2000) Erythropoietic activity and soluble transferrin receptor level in neonates and maternal blood. Acta Paediatr. 89, 675–679.

    PubMed  CAS  Google Scholar 

  283. Wiggins, R. C., Benjamins, J. A., Krigman, M. R., and Morell, P. (1974) Synthesis of myelin proteins during starvation. Brain Res. 80, 345–349.

    PubMed  CAS  Google Scholar 

  284. Wiggins, R. C., Miller, S. L., Benjamins, J. A., Krigman, M. R., and Morell, P. (1976) Myelin synthesis during postnatal nutritional deprivation and subsequent rehabilitation. Brain Res. 107, 257–273.

    PubMed  CAS  Google Scholar 

  285. Wiggins, R. C. and Fuller, G. N. (1978) Early postnatal starvation causes lasting brain hypomyelination. J. Neurochem. 30, 1231–1237.

    PubMed  CAS  Google Scholar 

  286. Zuppinger, K., Wiesmann, U., Siegrist, H. P., et al. (1981) Effect of glucose deprivation on sulfatide synthesis and oligodendrocytes in cultured brain cells of newborn mice. Pediatr. Res. 15, 319–325.

    PubMed  CAS  Google Scholar 

  287. Krigman, M. R. and Hogan, E. L. (1976) Undernutrition in the developing rat: effect upon myelination. Brain Res. 107, 239–255.

    PubMed  CAS  Google Scholar 

  288. Sikes, R. W., Fuller, G. N., Colbert, C., Chronister, R. B., DeFrance, J., and Wiggins, R. C. (1981) The relative numbers of oligodendroglia in different brain regions of normal and postnatally undernourished rats. Brain Res. Bull. 6, 385–391.

    PubMed  CAS  Google Scholar 

  289. Royland, J. E., Konat, G., and Wiggins, R. C. (1993) Abnormal upregulation of myelin genes underlies the critical period of myelination in undernourished developing rat brain. Brain Res. 607, 113–116.

    PubMed  CAS  Google Scholar 

  290. Royland, J. E., Konat, G. W., and Wiggins, R. C. (1993) Myelin gene activation: a glucose sensitive critical period in development. J. Neurosci. Res. 36, 399–404.

    PubMed  CAS  Google Scholar 

  291. Royland, J. E., Konat, G. W., and Wiggins, R. C. (1999) Differentiation dependent activation of the myelin genes in purified oligodendrocytes is highly resistant to hypoglycemia. Metab. Brain Dis. 14, 189–195.

    PubMed  CAS  Google Scholar 

  292. Carroll, P., Sendtner, M., Meyer, M., and Thoenen, H. (1993) Rat ciliary neurotrophic factor (CNTF): gene structure and regulation of mRNA levels in glial cell cultures. Glia 9, 176–187.

    PubMed  CAS  Google Scholar 

  293. Chernausek, S. D. (1993) Insulin-like growth factor-I (IGF-I) production by astroglial cells: regulation and importance for epidermal growth factor-induced cell replication. J. Neurosci. Res. 34, 189–197.

    PubMed  CAS  Google Scholar 

  294. Hammarberg, H., Risling, M., Hokfelt, T., Cullheim, S., and Piehl, F. (1998) Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries. J. Comp. Neurol. 400, 57–72.

    PubMed  CAS  Google Scholar 

  295. Moretto, G., Xu, R. Y., Walker, D. G., and Kim, S. U. (1994) Co-expression of mRNA for neurotrophic factors in human neurons and glial cells in culture. J. Neuropathol. Exp. Neurol. 53, 78–85.

    PubMed  CAS  Google Scholar 

  296. Janzer, R. C. and Raff, M. C. (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325, 253–257.

    PubMed  CAS  Google Scholar 

  297. Rubin, L. L., Hall, D. E., Porter, S., et al. (1991) A cell culture model of the blood-brain barrier. J. Cell Biol. 115, 1725–1735.

    PubMed  CAS  Google Scholar 

  298. Fierz, W., Endler, B., Reske, K., Wekerle, H., and Fontana, A. (1985) Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immunol. 134, 3785–3793.

    PubMed  CAS  Google Scholar 

  299. Fontana, A., Erb, P., Pircher, H., Zinkernagel, R., Weber, E., and Fierz, W. (1986) Astrocytes as antigen-presenting cells. Part II: Unlike H-2K-dependent cytotoxic T cells, H-2Ia-restricted T cells are only stimulated in the presence of interferon-gamma. J. Neuroimmunol. 12, 15–28.

    PubMed  CAS  Google Scholar 

  300. Frei, K. and Fontana, A. (1997) Antigen presentation in the CNS. Mol. Psychiatry 2, 96–98.

    PubMed  CAS  Google Scholar 

  301. Oh, J. W., Schwiebert, L. M., and Benveniste, E. N. (1999) Cytokine regulation of CC and CXC chemokine expression by human astrocytes. J. Neurovirol. 5, 82–94.

    PubMed  CAS  Google Scholar 

  302. Van Wagoner, N. J., Oh, J. W., Repovic, P., and Benveniste, E. N. (1999) Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J. Neurosci. 19, 5236–5244.

    PubMed  Google Scholar 

  303. Hansson, E. and Ronnback, L. (1992) Adrenergic receptor regulation of amino acid neurotransmitter uptake in astrocytes. Brain Res. Bull. 29, 297–301.

    PubMed  CAS  Google Scholar 

  304. Mentlein, R. and Dahms, P. (1994) Endopeptidases 24. 16 and 24. 15 are responsible for the degradation of somatostatin, neurotensin, and other neuropeptides by cultivated rat cortical astrocytes. J. Neurochem. 62, 27–36.

    PubMed  CAS  Google Scholar 

  305. Araque, A., Sanzgiri, R. P., Parpura, V., and Haydon, P. G. (1999) Astrocyte-induced modulation of synaptic transmission. Can. J. Physiol. Pharmacol. 77, 699–706.

    PubMed  CAS  Google Scholar 

  306. Vesce, S., Bezzi, P., and Volterra, A. (1999) The highly integrated dialogue between neurons and astrocytes in brain function. Sci. Prog. 82, 251–270.

    PubMed  Google Scholar 

  307. Brand, A., Leibfritz, D., Hamprecht, B., and Dringen, R. (1998) Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine. J. Neurochem. 71, 827–832.

    PubMed  CAS  Google Scholar 

  308. Hertz, L., Dringen, R., Schousboe, A., and Robinson, S. R. (1999) Astrocytes: glutamate producers for neurons. J. Neurosci. Res. 57, 417–428.

    PubMed  CAS  Google Scholar 

  309. Bush, T. G., Puvanachandra, N., Horner, C. H., et al. (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23, 297–308.

    PubMed  CAS  Google Scholar 

  310. Fitch, M. T., Doller, C., Combs, C. K., Landreth, G. E., and Silver, J. (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 19, 8182–8198.

    PubMed  CAS  Google Scholar 

  311. McKeon, R. J., Jurynec, M. J., and Buck, C. R. (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19, 10778–10788.

    PubMed  CAS  Google Scholar 

  312. Drukarch, B., Schepens, E., Stoof, J. C., Langeveld, C. H., and Van Muiswinkel, F. L. (1998) Astrocyte-enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species. Free. Radic. Biol. Med. 25, 217–220.

    PubMed  CAS  Google Scholar 

  313. Fillenz, M., Lowry, J. P., Boutelle, M. G., and Fray, A. E. (1999) The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiol. Scand. 167, 275–284.

    PubMed  CAS  Google Scholar 

  314. Porter, J. T. and McCarthy, K. D. (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog. Neurobiol. 51, 439–455.

    PubMed  CAS  Google Scholar 

  315. Seidman, K., Teng, A., Rosenkopf, R., Spilotro, P., and Weyhenmeyer, J. (1997) Isolation, cloning and characterization of a putative type-1 astrocyte cell line. Brain Res. 753, 18–26.

    PubMed  CAS  Google Scholar 

  316. Maragakis, N. J., Dietrich, J., Wong, V., et al. (2004) Glutamate transporter expression and function in human glial progenitors. Glia 45, 133–143.

    PubMed  Google Scholar 

  317. Mayer-Proschel, M., Liu, Y., Xue, H., Wu, Y., Carpenter, M. K., and Rao, M. S. (2002) Human neural precursor cells—an in vitro characterization. Clin. Neurosci. Res. 2, 58–69.

    CAS  Google Scholar 

  318. Miller, R. H. and Szigeti, V. (1991) Clonal analysis of astrocyte diversity in neonatal rat spinal cord cultures. Development 113, 353–362.

    PubMed  CAS  Google Scholar 

  319. Bignami, A., Eng, L. F., Dahl, D., and Uyeda, C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429–435.

    PubMed  CAS  Google Scholar 

  320. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Noble, M., Mayer-Pröschel, M. (2006). Glial Restricted Precursors. In: Rao, M.S. (eds) Neural Development and Stem Cells. Contemporary Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-914-1:143

Download citation

Publish with us

Policies and ethics