Skip to main content

Alterations in Raft Lipid Metabolism in Aging and Neurodegenerative Disorders

  • Chapter
Membrane Microdomain Signaling

Abstract

Sphingolipids are a prominent type of membrane phospholipid in eukaryotic cells and are particularly abundant in the nervous systems of mammals. They consist of a glycerol backbone with a phosphocholine zwitterionic hydrophilic headgroup and two long hydrocarbon chains that form a hydrophobic domain (Fig. 1). The hydrocarbon chains of sphingomyelin are relatively long (>20 carbons) and contain more saturated bonds than are present in phosphatidylcholine. Sphingomyelin contributes prominently to the biophysical properties of membranes, and in particular, the large disparity in the lengths of the two chains of sphingomyelin may allow for interdigitation between the hydrocarbons in the two opposing monolayers of the phospholipid bilayer, thereby providing a means for coupling-phase separation with the marked curvature of cell membranes. Sphingolipids also have a Tm near body temperature (37°C). The collective biophysical properties of sphingolipids suggest that they play important roles in the formation of specialized domains in membranes such as lipid rafts. Sphingolipid synthesis is initiated by serine palmitoyltransferase (SPT), which catalyzes the condensation of palmitoyl-CoA (acyl) with serine to form 3-dihydrosphinganine, and additional biosynthetic steps result in formation of sphingosine, which is then acylated to form ceramide. Choline can then be added to ceramide by choline-phosphotransferase, which results in the synthesis of sphingomyelin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessenko A. V. (2000) The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation, differentiation and death. Membr. Cell Biol. 13, 303–320.

    PubMed  CAS  Google Scholar 

  • Blanc E. M., Kelly J. F., Mark R. J., and Mattson M. P. (1997) 4-hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on Gαq/11. J. Neurochem. 69, 570–580.

    Article  PubMed  CAS  Google Scholar 

  • Boven L. A., Gomes L., Hery C., Gray F., Verhoef, J., Portegies, P., et al. (1999) Increased peroxynitrite activity in AIDS dementia complex: Implications for the neuropathogenesis of HIV-1 infection. J. Immunol. 162, 4319–4327.

    PubMed  CAS  Google Scholar 

  • Brann A. B., Scott R., Neuberger Y., Abulafia D., Boldin S., Fainzilber M., and Futerman A. H. (1999) Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J. Neurosci. 19, 8199–8206.

    PubMed  CAS  Google Scholar 

  • Chakraborty H., Sen P., Sur A., Chatterjee U., and Chakrabarti S. (2003) Age-related oxidative inactivation of Na(+), K(+)-ATPase in rat brain crude synaptosomes. Exp. Gerontol. 38, 705–710.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y., Ginis I., and Hallenbeck J. M. (2001) The protective effect of ceramide in immature rat brain hypoxia-ischemia involves up-regulation of bcl-2 and reduction of TUNEL-positive cells. J. Cereb. Blood Flow Metab. 21, 34–40

    Article  PubMed  Google Scholar 

  • Cudkowicz M. E., McKenna-Yasek D., Sapp P. E., Chin W., Geller B., Hayden D. L., et al. (1997) Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann. Neurol. 41, 210–221.

    Article  PubMed  CAS  Google Scholar 

  • Cutler R. G., Pedersen W. A., Camandola S., Rothstein J. D., and Mattson M. P. (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in ALS. Ann. Neurol. 52, 448–457.

    Article  PubMed  CAS  Google Scholar 

  • Cutler R. J., Kelly J., Stone K., et al. (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 101, 2070–2075.

    Article  PubMed  CAS  Google Scholar 

  • Davies S. M., Poljak A., Duncan M. W., Smythe G. A., and Murphy M. P. (2001) Measurements of protein carbonyls, ortho-and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic. Biol. Med. 31, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • DeKosky S. T. (2001) Epidemiology and pathophysiology of Alzheimer’s disease. Clin. Cornerstone 3, 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Del Canto M. C. and Gurney M. E. (1995) Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: A model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 676, 25–40.

    Article  Google Scholar 

  • Dietschy J. M. and Turley S. D. (2002) Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12, 105–112.

    Article  Google Scholar 

  • Dirnagl U., Iadecola C., and Moskowitz M. A. (1999) Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Foga I. O., Nath A., Hasinoff B. B., and Geiger J. D. (1997) Antioxidants and dipyridamole inhibit HIV-1 gp120-induced free radical-based oxidative damage to human monocytoid cells. J. Acquir. Immune Defic. Syndr. Hum. Retravirol. 16, 223–229.

    CAS  Google Scholar 

  • Goodman Y. and Mattson M. P. (1996) Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid β-peptide toxicity. J. Neurochem. 66, 869–872.

    Article  PubMed  CAS  Google Scholar 

  • Goritz C., Mauch D. H., Nagler K., and Pfrieger F. W. (2002) Role of glia-derived cholesterol in synaptogenesis: New revelations in the synapse-glia affair. J. Physiol. Paris 96, 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Han X., Holtzman D., McKeel D. W., Kelley J., and Morris J. C. (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: Potential role in disease pathogenesis. J. Neurochem. 82, 809–818.

    Article  PubMed  CAS  Google Scholar 

  • Hannun Y. A. and Obeid L. M. (1997) Ceramide and the eukaryotic stress response. Biochem. Soc. Trans. 25, 1171–1175.

    PubMed  CAS  Google Scholar 

  • Haughey N. J., Cutler R. G., Tammara A., McArthur J. C., Vargas D. L., Pardo C. A., et al. (2003) Perturbation of sphingolipid metabolism and ceramide production in HIV dementia. Ann. Neurol. 55, 251–267.

    Google Scholar 

  • Herr I., Martin-Villalba A., Kurz E., Roncailoli P., Schenkel J., Cifone M. G., et al. (1999) FK506 prevents stroke-induced generation of ceramide and apoptosis signaling. Brain Res. 826, 210–219.

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi K., Erlich S., Perl D. P., Ferlinz K., Bisgaier C. L., Sandhoff K., et al. (1995) Acid sphingomyelinase deficient mice: A model of types A and B Niemann-Pick disease. Nat. Gen. 10, 288–293.

    Article  CAS  Google Scholar 

  • Kelly J., Furukawa K., Barger S. W., Mark R. J., Rengen M. R., Blanc E. M., et al. (1996) Amyloid β-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA. 93, 6753–6758.

    Article  PubMed  CAS  Google Scholar 

  • Kruman I. I., Nath A., and Mattson M. P. (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp. Neurol. 154, 276–288.

    Article  PubMed  CAS  Google Scholar 

  • Kruman I. I., Pedersen W. A., Springer J. E., and Mattson M. P. (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol. 160, 28–39.

    Article  PubMed  CAS  Google Scholar 

  • Legler D. F., Micheau O., Doucey M. A.., Tschopp J., and Bron C. (2003) Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 18, 655–664.

    Article  PubMed  CAS  Google Scholar 

  • Lightle S. A., Oakley J. I., and Nikolova-Karakashian M. N. (2000) Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging. Mech. Ageing Dev. 120, 111–125.

    Article  PubMed  CAS  Google Scholar 

  • Liu B. and Hannun Y. A. (1997) Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J. Biol. Chem. 272, 16,281–16,287.

    Article  PubMed  CAS  Google Scholar 

  • Lu C., Chan, S. L., Haughey N., Lee W. T., and Mattson M. P. (2001) Selective and biphasic effect of the membrane lipid peroxidation product producer 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J. Neurochem. 78, 577–589.

    Article  PubMed  CAS  Google Scholar 

  • Mahfoud R., Garmy N., Maresca M., Yahi N., Puigserver A., and Fantini J. (2002) Identification of a common sphingolipid-binding domain in Alzheimer, prion and HIV-1 proteins. J. Biol. Chem. 277, 11,292–11,296.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Pang Z., Geddes J. W., Uchida K., and Mattson M. P. (1997) Amyloid β-peptide impairs glucose uptake in hippocampal and cortical neurons: Involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Fu W., Waeg G., and Uchida K. (1997) 4-hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 8, 2275–2281.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (2000) Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Culmsee C., and Yu C. (2000) Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 301, 173–187.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Camandola S. (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Duan W., Pedersen W. A. and Culmsee C. (2001) Neurodegenerative disorders and ischemic brain diseases. Apoptosis 6, 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 3, 65–94.

    Article  PubMed  CAS  Google Scholar 

  • McArthur J. C., Haughey N., Gartner S., Conant K., Pardo C., Nath A., et al. (2003) HIV-associated dementia: an evolving disease. J. Neurovirol. 9, 205–221.

    Article  PubMed  CAS  Google Scholar 

  • McAuley M. A. (1995) Rodent models of focal ischemia. Cerebrovasc. Brain Metab. Rev. 7, 153–180.

    PubMed  CAS  Google Scholar 

  • Mouton R.E. and Venable M.E. (2000) Ceramide induces expression of the senescence histochemical marker, beta-galactosidase, in human fibroblasts. Mech. Ageing Dev. 113, 169–181

    Article  PubMed  CAS  Google Scholar 

  • Pedersen W.A., Fu W., Keller J.N., Markesbery W.R., Appel S., Smith R.G., et al. (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 44, 819–824.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen W.A., Cashman N.R. and Mattson M.P. (1999) The lipid peroxidation product 4-hydroxynonenal impairs glutamate and glucose transport and choline acetyltransferase activity in NSC-19 motor neuron cells. Exp. Neurol. 155, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen W. A., Luo H., Fu W., Guo Q., Sells S. F., Rangnekar V., et al. (2000) Evidence that Par-4 participates in motor neuron death in amyotrophic lateral sclerosis. FASEB J. 14, 913–924.

    PubMed  CAS  Google Scholar 

  • Pettus B. J., Chalfant C. E. and Hannun Y. A. (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta. 1585, 114–125.

    PubMed  CAS  Google Scholar 

  • Puglielli L., Tanzi R. E. and Kovacs D. M. (2003) Alzheimer’s disease: the cholesterol connection. Nat. Neurosci. 6, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Santana P., Pena L.A., Haimovitz-Friedman A., Martin S., Green D., McLoughlin M., et al. (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Shi B., Raina J., Lorenzo A., Busciglio J., and Gabuzda D. (1998) Neuronal apoptosis induced by HIV-1 Tat protein and TNF-alpha: potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-1 dementia. J. Neurovirol. 4, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky M. (1987) Patterns of lipid changes in membranes of the aged brain. Gerontology 33, 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Silvius J. R. (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim. Biophys. Acta. 1610, 174–183.

    Article  PubMed  CAS  Google Scholar 

  • Smith J. D. (2000) Apolipoprotein E4: an allele associated with many diseases. Ann. Med. 32, 118–127.

    PubMed  CAS  Google Scholar 

  • Tsui-Pierchala B. A., Encinas M., Milbrandt J. and Johnson E. M. Jr. (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci. 25, 412–417.

    Article  PubMed  CAS  Google Scholar 

  • Turchan J, Pocernich CB, Gairola C, Chauhan A, Schifitto G., Butterfield D. A., et al. (2003) Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants. Neurology 28, 307–314.

    Google Scholar 

  • Willaime S., Vanhoutte P., Caboche J., Lemaigre-Dubreuil Y., Mariani J. and Brugg B. (2001) Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur. J. Neurosci. 13, 2037–2046.

    Article  PubMed  CAS  Google Scholar 

  • Wood W. G., Schroeder F., Igbavboa U.,. Avdulov N. A. and Chochina S. V. (2002) Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiol. Aging 23, 685–694.

    Article  PubMed  CAS  Google Scholar 

  • Yang S. N. (2000) Ceramide-induced sustained depression of synaptic currents mediated by ionotropic glutamate receptors in the hippocampus: an essential role of postsynaptic protein phosphatases. Neuroscience 96, 253–258

    Article  PubMed  CAS  Google Scholar 

  • Yu Z., Nikolova-Karakashian M., Zhou D., Cheng G., Schuchman E. H. and Mattson M. P. (2000) Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J. Mol. Neurosci. 15, 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Zhou H., Summers S.A,. Birnbaum M.J., and Pittman R.N. (1998) Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J. Biol. Chem. 273, 16,568–16,575.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mattson, M.P., Cutler, R.G., Haughey, N.J. (2005). Alterations in Raft Lipid Metabolism in Aging and Neurodegenerative Disorders. In: Mattson, M.P. (eds) Membrane Microdomain Signaling. Humana Press. https://doi.org/10.1385/1-59259-803-X:143

Download citation

Publish with us

Policies and ethics