Skip to main content

Role of Rafts in Virus Fusion and Budding

  • Chapter
Book cover Membrane Microdomain Signaling
  • 469 Accesses

Abstract

The discovery that cell membranes are a mosaic of at least two domains (raft and nonraft) differing in lipid composition has led to an explosion of studies investigating the domain localization of a large number of individual proteins, including proteins involved in the cellular entry and egress of viruses and other pathogens. The driving force behind these studies is the assumption that the partitioning between domains has functional consequences, and will shed light on fundamental processes in cell biology such as signaling, trafficking, macromolecular assembly, regulation of protein interactions, and membrane fission and fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrami L., Shihui L., Cosson P., Leppla S. H., and Gisou van der Goot F. (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160, 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Ahn A., Gibbons D. L., and Kielian M. (2002) The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains. J. Virol. 76, 3267–3275.

    Article  PubMed  CAS  Google Scholar 

  • Alfsen A., Iniguez P., Bouguyon E., and Bomsel M. (2001) Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol. 166, 6257–6265.

    PubMed  CAS  Google Scholar 

  • Ali A., Avalos R. T., Ponimaskin E., and Nayak D. P. (2000) Influenza virus assembly: Effect of influenza virus glycoproteins on the membrane association of M1 protein. J. Virol. 74, 8709–8719.

    Article  PubMed  CAS  Google Scholar 

  • Ali A. and Nayak D. P. (2000) Assembly of Sendai virus: M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein. Virol. 276, 289–303.

    Article  CAS  Google Scholar 

  • Aloia R. C., Curtain C. C., and Jensen F. C. (1992) in Advances in Membrane Fluidity, vol. 6, Aloia R.C. and Curtain C.C., eds., Wiley-Liss, New York, pp. 283–304.

    Google Scholar 

  • Aloia R. C., Tian H., and Jensen F. C. (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc. Natl. Acad. Sci. USA 90, 5181–5185.

    Article  PubMed  CAS  Google Scholar 

  • Anderson H. A., Chen Y., and Norkin L. C. (1998) MHC class I molecules are enriched in caveolae but do not enter with simian virus 40. J. Gen. Virol. 79, 1469–1477

    PubMed  CAS  Google Scholar 

  • Barman S., Ali A., Hui E. K.-W., Adhidary L., and Nayak D. P. (2001) Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus Res. 77, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Bavari S., Bosio C. M., Wiegand E., Ruthel G., Will A. B., Geisbert T. W., et al. (2002) Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses. J. Exp. Med. 195, 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Bhat S., Mettus R. V., Reddy E. P., Ugen K. E., Srikanthan V., Williams W. V., et al. (1993) The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206-275. AIDS Res. Human Retroviruses 9, 175.

    Article  CAS  Google Scholar 

  • Bomsel M. (1997) Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat. Med. 3, 42–47.

    Article  PubMed  CAS  Google Scholar 

  • Brown G., Aitken J., Rixon H. W., and Sugrue R. J. (2002a) Caveolin-1 is incorporated into mature respiratory syncytial virus particles during virus assembly on the surface of virus-infected cells. J. Gen. Virol. 83, 611–621.

    PubMed  Google Scholar 

  • Brown G., Rixon H. W., and Sugrue R. J. (2002b) Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J. Gen. Virol. 83, 1841–1850.

    PubMed  CAS  Google Scholar 

  • Campbell S. M., Crowe S. M., and Mak J. (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J. Clin. Virol. 22, 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee P. K., Eng C. H., and Kielian M. (2002) Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein. J. Virol. 76, 12,712–12,722.

    Article  PubMed  CAS  Google Scholar 

  • Chazal N. and Gerlier D. (2003) Virus entry, assembly, budding, and membrane rafts. Microbiol. and Mol. Biol. Rev. 67, 226–237.

    Article  CAS  Google Scholar 

  • Coffin W. F. III, Geiger T. R., and Martin J. M. (2003) Transmembrane domains 1 and 2 of the latent membrane protein 1 of Epstein-Barr virus contain a lipid raft targeting signal and play a critical role in cytostasis. J. Virol. 77, 3749–3758.

    Article  PubMed  CAS  Google Scholar 

  • Deckert M., Ticchioni M., and Bernard A. (1996) Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases. J. Cell Biol. 133, 791–799.

    Article  PubMed  CAS  Google Scholar 

  • Del Real G., Jimenez-Baranda S., Lacalle R. A., Mira E., Lucas P., Gomez-Mouton C., et al. (2002) Blocking of HIV-1 infection by targeting CD4 to nonraft membrane domains. J. Exp. Med. 196, 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Derdowski A., Wang J.-J., and Spearman P. (2003) Independent segregation of human immunodeficiency virus type 1 gag protein complexes and lipid rafts. J. Virol. 77, 1916–1926.

    Article  PubMed  CAS  Google Scholar 

  • Dykstra M. L., Longnecker R., and Pierce S. K. (2001) Epstein-Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity 14, 57–67.

    Article  PubMed  CAS  Google Scholar 

  • Earp L. J., Delos S. E., Netter R. C., Bates P, and White J. M. (2003) The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH. J. Virol. 77, 3058–66.

    Article  PubMed  CAS  Google Scholar 

  • Eckert D. M. and Kim P. S. (2001) Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70, 777–810.

    Article  PubMed  CAS  Google Scholar 

  • Edidin M. (2003) The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–83.

    Article  PubMed  CAS  Google Scholar 

  • Empig C. J. and Goldsmith M. A. (2002) Association of the caveola vesicular system with cellular entry by filoviruses. J. Virol. 76, 5266–5270.

    Article  PubMed  CAS  Google Scholar 

  • Gimpl G., Burger K., and Fahrenholz F. (1997) Cholesterol as modulator of receptor function. Biochemistry 36, 10,959–10,974.

    Article  PubMed  CAS  Google Scholar 

  • Guyader M., Kiyokawa E., Abrami L., Turelli P., and Trono D. (2002) Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J. Virol. 76, 10,356–10,364.

    Article  PubMed  CAS  Google Scholar 

  • Halwani R., Khorchid A., Cen S., and Kleiman L. (2003) Rapid localization of gag/gagpol complexes to detergent-resistant membrane during the assembly of human immunodeficiency virus type 1. J. Virol. 77, 3973–3984.

    Article  PubMed  CAS  Google Scholar 

  • Hammache D., Pieroni G., Yahi N., Delezay O., Koch N., Lafont H., et al. (1998) Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J. Biol. Chem. 273, 7967–7971.

    Article  PubMed  CAS  Google Scholar 

  • Harder T., Scheiffele P., Verkade P., Simons K. (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942.

    Article  PubMed  CAS  Google Scholar 

  • Henderson G., Murray J., and Yeo R. P. (2002) Sorting of the respiratory syncytial virus matrix protein into detergent-resistant structures is dependent on cell-surface expression of the glycoproteins. Virol. 300, 244–254.

    Article  CAS  Google Scholar 

  • Herreros J., Ng T., and Schiavo G. (2001) Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell 12, 2947–2960.

    PubMed  CAS  Google Scholar 

  • Holm K., Weclewicz K., Hewson R., and Suomalainen M. (2003) Human immunodeficiency virus type 1 assembly and lipid rafts: Pr55gag associates with membrane domains that are largely resistant to Brij98 but sensitive to Triton X-100. J. Virol. 77, 4802–4817.

    Article  CAS  Google Scholar 

  • Hug P., Lin H. M., Korte T., Xiao X., Dimitrov D. S., Wang J. M., et al. 2000. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J. Virol. 74, 6377–6385.

    Google Scholar 

  • Koshizuka T., Goshima F., Takakuwa H., Nozawa N., Daikoku T., Koiwai O., et al. (2002) Identification and characterization of the UL56 gene product of herpes simplex virus type 2. J. Virol. 76, 6718–6728.

    Article  PubMed  CAS  Google Scholar 

  • Kovbasnjuk O., Edidin M., and Donowitz M. (2001) Role of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells. J. Cell Sci. 114, 4025–4031.

    PubMed  CAS  Google Scholar 

  • Kozak S. L., Heard J. M. and Kabat D. (2002) Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus. J. Virol. 76, 1802–1815

    Article  PubMed  CAS  Google Scholar 

  • Kwong P. D., Wyatt R., Robinson J., Sweet R. W., Sodroski J., and Hendrickson W. A. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659.

    Article  PubMed  CAS  Google Scholar 

  • Lee G. E., Church G. A., and Wilson D. W. (2003) A subpopulation of tegument protein vhs localizes to detergent-insoluble lipid rafts in herpes simplex virus-infected cells. J. Virol. 77, 2038–2045.

    Article  PubMed  CAS  Google Scholar 

  • Li M., Yang C., Tong S., Weidmann A., and Compans R. W. (2002) Palmitoylation of the murine leukemia virus envelope protein is critical for lipid raft association and surface expression. J. Virol. 76, 11,845–11,852.

    Article  PubMed  CAS  Google Scholar 

  • Liao Z., Cimakasky L. M., Hampton R., Nguyen D. H., and Hildreth J. E. (2001) Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res. Human Retroviruses 17, 1009–1019.

    Article  CAS  Google Scholar 

  • Lindwasser O. W. and Resh M. D. (2002) Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding. Proc. Natl. Acad. Sci. USA 99, 13,037–13,042.

    Article  PubMed  CAS  Google Scholar 

  • Lipowsky R. (1992) Budding of membranes induced by intramembrane domains. J. Phys. II France 2, 1825–1840.

    Article  CAS  Google Scholar 

  • Liu N. Q., Lossinsky A. S., Popik W., Li X., Gujuluva C., Kriederman B., et al. (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J. Virol. 76, 6689–6700.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y. E. and Kielian M. (2000a) Semliki Forest virus budding: Assay, mechanisms, and cholesterol requirement. J. Virol. 74, 7708–7719.

    Article  PubMed  CAS  Google Scholar 

  • Lu X. and Silver J. (2000b) Ecotropic murine leukemia virus receptor is physically associated with caveolin and membrane rafts. Virology 276, 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Lu X., Xiong Y., and Silver J. (2002) Asymmetric requirement for cholesterol in receptor-bearing but not envelope-bearing membranes for fusion mediated by ecotropic murine leukemia virus. J. Virol. 76, 6701–6709.

    Article  PubMed  CAS  Google Scholar 

  • Manes S., Mira E., Gomez-Mouton C., Lacalle R. A., Keller P., Labrador J. P., et al. (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 18, 6211–6220.

    Article  PubMed  CAS  Google Scholar 

  • Manes S., del Real G., Lacalle R. A., Lucas P., Gomez-Mouton C., Sanchez-Palomino S., et al. (2000) Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection. EMBO Rep. 1, 190–196.

    Article  PubMed  CAS  Google Scholar 

  • Manie S. N., Debreyne S., Vincent S., and Gerlier D. (2000) Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J. Virol. 74, 305–311.

    PubMed  CAS  Google Scholar 

  • Meng G., Wei X., Wu X., Sellers M. T., Decker J. M., Moldoveanu Z., et al. (2002) Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat. Med. 8, 150–156.

    Article  PubMed  CAS  Google Scholar 

  • Moseby L., Corver J., Erululla R. K., Bittman R., and Wilschut J. (1995) Sphingolipids activate membrane fusion of Semliki Forest virus in a sterospecific manner. Biochemistry 34, 10,319–10,324.

    Article  Google Scholar 

  • Mothes W., Boerger A. L., Narayan S., Cunningham J. M., and Young J. A. T. (2000) Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 103, 679–689.

    Article  PubMed  CAS  Google Scholar 

  • Narayan S., Barnard R. J. O., and Young J. A. T. (2003) Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity. J. Virol. 77, 1977–83.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen D. H. and Hildreth J. E. (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74, 3264–3272.

    Article  PubMed  CAS  Google Scholar 

  • Ono A. and Freed E. O. (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl. Acad. Sci. USA 98, 13,925–13,930.

    Article  PubMed  CAS  Google Scholar 

  • Orlandi P. A. and Fishman P. H. (1998) Filipin-dependent inhibition of cholera toxin: Evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol. 141, 905–915

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L., Kartenbeck J., and Helenius A. (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 3, 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Percherancier Y., Lagane B., Planchenault T., Staropoli I., Altmeyer R., Virelizier J.-L., et al. (2003) HIV-1 entry into T-cells is not dependent on CD4 and CCR5 localization to sphingolipid-enriched, detergent-resistant, raft membrane domains. J. Biol. Chem. 278, 3153–3161.

    Article  PubMed  CAS  Google Scholar 

  • Pickl W. F., Pimentel-Muinos F. X., and Seed B. (2001) Lipid rafts and pseudotyping. J. Virol. 75, 7175–7183.

    Article  PubMed  CAS  Google Scholar 

  • Poon D. T. K., Coren L. V., and Ott D. E. (2000) Efficient incorporation of HLA class II onto human immunodeficiency virus type 1 requires envelope glycoprotein packaging. J. Virol 74, 3918–3923.

    Article  PubMed  CAS  Google Scholar 

  • Popik W., Alce T. M., and Au W. C. (2002) Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. J. Virol. 76, 4709–4722.

    Article  PubMed  CAS  Google Scholar 

  • Pornillos O., Garrus J. E., and Sundquist W. I. (2002) Mechanisms of enveloped RNA virus budding. Trends Cell Biol. 12, 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Pralle A., Keller P., Florin E.-L., Simons K., and Hörber J. K. H. (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Raulin J. (2002) Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Prog. Lipid Res. 41, 27–65.

    Article  PubMed  CAS  Google Scholar 

  • Rodal S. D., Skretting G., Garred O., Vilhardt F., van Deurs B., and Sandvig K. (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated vesicles. Mol. Biol. Cell 10, 961–974.

    PubMed  CAS  Google Scholar 

  • Rousso I., Mixon M. B., Chen B. K., and Kim P. S. 2000. Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc. Natl. Acad. Sci. USA 97, 13,523–13,525.

    Google Scholar 

  • Saez-Cirion A., Nir S., Lorizate M., Agirre A., Cruz A., Perez-Gil J., et al. (2002) Sphingomyelin and cholesterol promote HIV-1 gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J. Biol. Chem. 277, 21,776–21,785.

    Article  PubMed  CAS  Google Scholar 

  • Sakai T., Ohuchi R., and Ohuchi M. (2002) Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J. Virol. 76, 4603–4611.

    Article  PubMed  CAS  Google Scholar 

  • Samsonov A. V., Chatterjee P. K., Raznikonv V. I., Eng C. H., Kielian M., and Cohen F. (2002) Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus, J. Virol. 76, 12,691–12,702.

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P., Roth M. G., and Simons K. (1997) Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508.

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P., Rietveld A., Wilk T., and Simons K. (1999) Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044.

    Article  PubMed  CAS  Google Scholar 

  • Shi S. T., Lee K.-J., Aizaki H., Hwang S. B., and Lai M. M. C. (2003) Hepatitis C virus RNA replication occurs on a detergent-resistant membrane that cofractionates with caveolin-2. J. Virol. 77, 4160–4168.

    Article  PubMed  CAS  Google Scholar 

  • Schutz G. J., Kada G., Pastushenko V. P., and Schindler H. (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Selvarangan R., Goluszko P., Popov V., Singhal J., Pham T., Lublin D. M., et al. (2000) Role of decay-accelerating factor domains and anchorage in internalization of Dr-fimbriated Escherichia coli. Infect. Immun. 68, 1391–1399.

    Article  PubMed  CAS  Google Scholar 

  • Shin J.S., Gao Z., and Abraham S. N. 2000. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289, 785–788.

    Google Scholar 

  • Simons K. and van Meer G. (1988) Lipid sorting in epithelial cells. Biochemistry 27, 6197.

    Article  PubMed  CAS  Google Scholar 

  • Singer I. I., Scott S., Kawka D. W., Chin J., Daugherty B. L., DeMartino J. A., et al. (2001) CCR5, CXCR4, and CD4 are clustered and closely apposed on microvilli of human macrophages and T cells. J. Virol. 75, 3779–3790.

    Article  PubMed  CAS  Google Scholar 

  • Stang E., Kartenbeck J. and Parton R. G. (1997) Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol. Biol. Cell 8, 47–57.

    PubMed  CAS  Google Scholar 

  • Steinhauser D. A., Wharton W. A., Wiley D. C., and Skehel J. J. (1991) Deacylation of the hemagglutinin of influenza A/Aichi/2/68 has no effect on membrane fusion properties. Virol. 184, 445–448.

    Article  Google Scholar 

  • Stuart A. D., Eustace H. E., McKee T. A., and Brown, T. D. K. (2002) A novel cell entry pathway for a DAF-using human enterovirus is dependent on lipid rafts. J. Virol. 76, 9307–9322.

    Article  PubMed  CAS  Google Scholar 

  • Subtil A., Gaidarov I., Kobylarz K., Lampson M. A., Keen J. H., and McGraw T. E. (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl. Acad. Sci. USA 96, 6775–6780.

    Article  PubMed  CAS  Google Scholar 

  • Trkola A., Dragic T., Arthos J., Binley J. M., Olson W. C., Allaway G. P., et al. (1996) CD4-dependent, antibody-sensitive interactions between HIV-1 and its co receptor CCR-5. Nature 384, 184–187.

    Article  PubMed  CAS  Google Scholar 

  • Vereb G., Matkó J., Vamosi G., Ibrahim S. M., Magyar E., Varga S., et al. (2000) Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc. Natl. Acad. Sci. USA 97, 6013–6018.

    Article  PubMed  CAS  Google Scholar 

  • Vincent S. D., Gerlier D., and Manie S. N. (2000) Measles virus assembly within membrane rafts. J. Virol. 76, 9911–9915.

    Article  Google Scholar 

  • Waarts B. L., Bittman R., and Wilschut J. (2002) Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J. Biol. Chem. 277, 38,141–38,147.

    Article  PubMed  CAS  Google Scholar 

  • Wang J. K., Kiyokawa E., Verdin E., and Trono D. (2000) The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc. Natl. Acad. Sci. USA 97, 394–399.

    Article  PubMed  CAS  Google Scholar 

  • Wooldridge K. G., Williams P. H., and Ketley J. M. (1996) Host signal transduction and endocytosis of Campylobacter jejuni. Microb. Pathog. 21, 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Wu L., Gerard N. P., Wyatt R., Choe H., Parolin C., Ruffing N., et al. (1996) CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Xu X. and London E. (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39, 843–849.

    Article  PubMed  CAS  Google Scholar 

  • Yahi N., Baghdiguian S., Moreau H., and Fantini J. (1992) Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. J. Virol. 66, 4848.

    PubMed  CAS  Google Scholar 

  • Yang L. and Ratner L. (2002) Interaction of HIV-1 Gag and membranes in a cell-free system. Virology 302, 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J., Pekosz A., and Lamb R. A. (2000) Influenza virus assembly and lipid raft microdomains: A role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74, 4634–4644.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y. H., Plemenitas A., Linnemann T., Fackler O. T., and Peterlin B. M. (2001) Nef increases infectivity of HIV via lipid rafts. Curr. Biol. 11, 875–879.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ou, W., Silver, J. (2005). Role of Rafts in Virus Fusion and Budding. In: Mattson, M.P. (eds) Membrane Microdomain Signaling. Humana Press. https://doi.org/10.1385/1-59259-803-X:127

Download citation

Publish with us

Policies and ethics