Skip to main content

Role of Cholesterol in Membrane Microdomain Signaling

  • Chapter
  • 448 Accesses

Abstract

In monolayers of synthetic mixtures of phospholipids, sphingolipids, and free cholesterol (FC), the spontaneous formation of FC/sphingolipid-rich domains has been shown (Dietrich et al., 2001, 2002). Over the last decade, evidence has accumulated that comparable structures are present in the plasma membranes of living cells (Anderson, 1998; Smart, et al, 1999; Simons and Toomre, 2000; Fielding and Fielding, 2000; Parton, 2003). Because of their lipid composition, FC/sphingolipid-rich membrane domains are insoluble in nonionic detergents (Brown and London, 1998) and on this basis have been purified, together with a characteristic pattern of associated proteins. Flotation of the plasma membrane fraction in the absence of detergent purifies a similar FC/sphingolipid-rich fraction (Smart et al., 1996). More recently, it has become clear that two distinct and nonconvertible kinds of FC/sphingolipid-rich microdomains (lipid rafts and caveolae) (Iwabuchi et al., 1998; Abrami et al., 2001; Sowa et al., 2001) are present in both types of preparations. The two classes are increasingly recognized to play divergent roles at the cell surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrami L., Fivaz M., Kobayashi T., Kinoshita T., Parton R. G., and van der Groot F. G. (2001) Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains. J. Biol. Chem. 276, 30,729–30,736.

    Article  PubMed  CAS  Google Scholar 

  • Acconcia F., Ascenzi P., Fabozzi G., Visca P., and Marino M. (2004) S-palmitolation modulates human estrogen receptor-alpha functions. Biochem. Biophys. Res. Comm. 316, 878–883.

    Article  PubMed  CAS  Google Scholar 

  • Anderson R. G. W. (1998) The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225.

    Article  PubMed  CAS  Google Scholar 

  • Anderson R. G. W. and Jacobson K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts and other lipid domains. Science 296, 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher M. S. and Munro S. (1993) Cholersterol and the Golgi apparatus. Science 261, 1280–1281.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. A. and London E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136.

    Article  PubMed  CAS  Google Scholar 

  • Chao W. T., Fan S. S., Chen J. K., and Yang V. C. (2003) Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells. J. Lipid Res. 44, 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  • Darnell J. E. (1997) STATs and gene regulation. Science 277, 1630–1635.

    Article  PubMed  CAS  Google Scholar 

  • Dietzen D. J., Hastings W. R., and Lublin D. M. (1995) Caveolin is palmitoylated on multiple cysteine residues. J. Biol. Chem. 270, 6838–6842.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C., Volovyk Z. N., Levi M., Thompson N. L., and Jacobson K. (2001) Partitioning of Thy-1, GM1 and cross-phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10,642–10,647.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C., Yang B., Fujiwara T., Kusumi A., and Jacobson K. (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284.

    PubMed  CAS  Google Scholar 

  • Dreja K., Voldstedlund M., Vinten J., Tranum-Jensen J., Hellstrand P., and Sward K. (2002) Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler. Thromb. Vasc. Biol. 22, 1267–1272.

    Article  PubMed  CAS  Google Scholar 

  • Edidin M. (2003) The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    Article  PubMed  CAS  Google Scholar 

  • Fielding C. J. and Fielding P. E. (2000) Cholesterol and caveolae: structural and functional relationships. Biochim. Biophys. Acta 1529, 210–222.

    PubMed  CAS  Google Scholar 

  • Fielding C. J. and Fielding P. E. (2003) Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim. Biophys. Acta 1610, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Fielding P. E. and Fielding C. J. (1996) Intracellular transport of low density lipoprotein derived free cholesterol begins at clathrin coated pits and terminates at cell surface caveolae. Biochemistry 35, 14,932–14,938.

    Article  PubMed  CAS  Google Scholar 

  • Fielding P. E., Nagao K., Hakamata H., Chimini G., and Fielding C. J. (2000) A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 39, 14,113–14,120.

    Article  PubMed  CAS  Google Scholar 

  • Fielding P. E., Russel J. S., Spencer T. A., Hakamata H., Nagao K., and Fielding C. J. (2002) Sterol efflux to apolipoprotein A-1 originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry 41, 4929–4937.

    Article  PubMed  CAS  Google Scholar 

  • Fragoso R., Ren D., Zhang X., Su M. W., Burakoff S. J., and Jin Y. J. (2003) Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling. J. Immunol. 170, 913–921.

    PubMed  CAS  Google Scholar 

  • Friedrichson T. and Kurzchalia T. V. (1998) Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Furuchi T. and Anderson R. G. W. (1998) Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J. Biol. Chem. 273, 21,099–21,104.

    Article  PubMed  CAS  Google Scholar 

  • Gagescu R., Demaurex N., Parton R. G., Hunziker W., Huber L. A., and Gruenberg J. (2000) The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol. Cell Biol. 11, 2775–2791.

    CAS  Google Scholar 

  • Garrigues A., Escargueil A. E., and Orlowski S. (2002) The multidrug transporter in the cell membranes. Proc. Natl. Acad. Sci. USA 99, 10,347–10,352.

    Article  PubMed  CAS  Google Scholar 

  • Gu X., Kozarsky K., and Krieger M. (2000) Scavenger receptor B, type-I mediated [3H]-cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor. J. Biol. Chem. 275, 29,993–30,001.

    Article  PubMed  CAS  Google Scholar 

  • Heim M. H. (1999) The Jak-STAT pathway: cytokine signaling from the receptor to the nucleus. J. Recept. Signal Transduct. Res. 19, 75–120.

    Article  PubMed  CAS  Google Scholar 

  • Hering H., Lin C. C., and Sheng M. (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci. 23, 3262–3271.

    PubMed  CAS  Google Scholar 

  • Horejsi V. (2003) The roles of membrane microdomains (rafts) in T-cell activation. Immunol. Rev. 191, 148–164.

    Article  PubMed  CAS  Google Scholar 

  • Hiol A., Davey P. C., Osterhout J. L., Waheed A. A., Fischer E. R., Chen C. K. et al. (2003) Palmitoylation regulates regulators of G-protein signaling (RGS)-16 function. Mutation of amino-terminal cysteine residues on RGS16 prevent its targeting to lipid rafts and palmitoylation of an internal cysteine residue. J. Biol. Chem. 278, 19,301–19,308.

    Article  PubMed  CAS  Google Scholar 

  • Inoue H., Miyaji M., Kosugi A., Nagafuku M., Okazaki T., Mimori T. et al. (2002) Lipid rafts as the signaling scaffold for NK cell activation: Tyrosine phosphorylation and association of LAT with phosphatidylinositol-3-kinase and phospholipase C-gamma following CD2 stimulation. Eur. J. Immunol. 32, 2188–2198.

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi K., Handa K., and Hakomori S. (1998) Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273, 33,766–33,773.

    Article  PubMed  CAS  Google Scholar 

  • Jordan S. and Rodgers W. (2003) T cell glycolipid-enriched membrane domains are constitutively assembled into membrane patches that translocate to immune synapses. J. Immunol. 171, 78–87.

    PubMed  CAS  Google Scholar 

  • Kaiser R. A., Oxhorn B. C., Andrews G., and Buxton I. L. (2002) Functional compartmentation of endothelial P2Y receptor signaling. Circ. Res. 91, 292–299.

    Article  PubMed  CAS  Google Scholar 

  • Karpen H. E., Bukowski J. T., Hughes T., Gratton J. P., Sessa W. C., and Galiani M. R. (2001) The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem. 276, 19,503–19,511.

    Article  PubMed  CAS  Google Scholar 

  • Kenworthy A. K., Petranova N., and Edidin M. (2000) High resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655.

    PubMed  CAS  Google Scholar 

  • Kranenburg O., Verlaan I., and Moolenaar W. H. (2001) Regulating c-Ras function: cholesterol depletion affects caveolin-association, GTP loading, and signaling. Curr. Biol. 11, 1880–1884.

    Article  PubMed  CAS  Google Scholar 

  • Labrecque L., Royal I., Surprenant D. S., Patterson C., Gingras D., and Beliveau R. (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol. Biol. Cell 14, 334–347.

    Article  PubMed  CAS  Google Scholar 

  • Lavie Y., Fiucci G., and Liscovitch M. (1998) Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells . J. Biol. Chem. 273, 32,380–32,383.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. W., Reimer C. L., Oh P., Campbell D. B., and Schnitzer J.E. (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16, 1391–1397.

    Article  PubMed  CAS  Google Scholar 

  • Lee H. L., Woodman S. E., Engelman J. A., Volonte D., Galbiati F., Kauffman H. L. et al. (2001) Palmitoylation of caveolin-1 at a single site (cys-156) controls its coupling to the c-Src tyrosine kinase. J. Biol. Chem. 276, 35,150–35,158.

    Article  PubMed  CAS  Google Scholar 

  • Marwali M. R., Rey-Ladino J., Dreolini L., Shaw D., and Takei F. (2003) Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood 102, 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Matkó J., Bodnar A., Vereb G., Bene L., Vamosi G., Szentesi G., et al. (2002) GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur. J. Biochem. 269, 1199–2008.

    Article  PubMed  Google Scholar 

  • Matthews V., Schuster B., Schutze S., Bussmeyer I., Ludwig A., Hundhausen C., et al. (2003) Cellular cholesterol depletion triggers shedding of the human interleukin IL-6 receptor by ADAM10 and ADAM17 (TACE). J. Biol. Chem. 278, 38,829–38,839.

    Article  PubMed  CAS  Google Scholar 

  • Matveev S. V. and Smart E. J. (2002) Heterologous desensitivation of EGF receptors and PDGF receptors by sequestration in caveolae. Am. J. Physiol. 282, C935–C946.

    CAS  Google Scholar 

  • Moffett S., Brown D. A., and Linder M. E. (2000) Lipid-dependent targeting of G-proteins into rafts. J. Biol. Chem. 275, 2191–2198.

    Article  PubMed  CAS  Google Scholar 

  • Monier S., Dietzen D. J., Hastings W. R., Lublin D. M., and Kurzchalia T. V. (1996) Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acid acylation or cholesterol. FEBS Lett. 388, 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Nomura R. and Fujimoto T. (1999) Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol. Cell Biol. 10, 975–986.

    CAS  Google Scholar 

  • Oh P., McIntosh D. P., and Schnitzer J. E. (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Ostermeyer A. G., Paci J. M., Zeng Y., Lublin D. M., Munro S., and Brown D. A. (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J. Cell Biol. 152, 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  • Parat M. O. and Fox P. L. (2001) Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible. J. Biol. Chem. 276, 15,776–15,782.

    Article  PubMed  CAS  Google Scholar 

  • Park H., Go Y. M., St. John P. L., Maland M. C., Lisanti M. P., Abrahamson D. R., et al. (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-related kinase. J. Biol. Chem. 273, 32,304–32,311.

    Article  PubMed  CAS  Google Scholar 

  • Parpal S., Karlsson M., Thorn H., and Stralfors P. (2001) Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J. Biol. Chem. 276, 9670–9678.

    Article  PubMed  CAS  Google Scholar 

  • Parton R. G. (2003) Caveolae—from ultrastructure to molecular mechanisms. Nat. Rev. Mol. Cell Biol. 4, 162–167.

    Article  PubMed  CAS  Google Scholar 

  • Peterson T. E., Poppa V., Ueba H., Wu A., Yan C., and Berk B. C. (1999) Opposing effects of reactive oxygen species and cholesterol on endothelial nitric oxide synthesis and endothelial cell caveolae. Circ. Res. 85, 29–37.

    PubMed  CAS  Google Scholar 

  • Pike L. J. and Casey L. (2002) Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking. Biochemistry 41, 10,315–10,322.

    Article  PubMed  CAS  Google Scholar 

  • Pike L. J. and Miller J. M. (1998) Cholesterol depletion delocalizes phosphoatidylinositol bisphosphate and inhibits hormone-stimulated phosphoatidylinositol turnover. J. Biol. Chem. 273, 22,298–22,304.

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz K. B., Lander H. M., Summers B., Robishaw J. D., Balcueva E. A., and Hajjar D. P. (1997a) G-protein mediated signaling in cholesterol-enriched arterial smooth muscle cells. 1. Reduced membrane-associated G-protein content due to diminished isoprenylation of G-gamma subunits and p21ras. Biochemistry 36, 9523–9531.

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz K. B., Lander H. M., Summers B., and Hajjar D. P. (1997b) G-protein mediated signaling in cholesterol-enriched arterial smooth muscle cells. 2. Role of protein kinase C-delta in the regulation of eicosanoid production. Biochemistry 36, 9532–9539.

    Article  PubMed  CAS  Google Scholar 

  • Pralle A., Keller P., Florin E. L., Simons K., and Horber J. K. (2000) Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008.

    Article  PubMed  CAS  Google Scholar 

  • Ringerike T., Blystad F. D., Levy F. O., Madshus I. H., and Stang E. (2002) Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J. Cell Sci. 115, 1331–1340.

    PubMed  CAS  Google Scholar 

  • Rizzo M. A., Kraft C. A., Watkins S. C., Levitan E. S., and Romero G. (2001) Agonist-dependent traffic of raft-associated Ras and Raf-1 is required for activation of the mitogen-activated protein kinase cascade. J. Biol. Chem. 276, 34,928–34,933.

    Article  PubMed  CAS  Google Scholar 

  • Robbins S. M., Quantrell N. A., and Bishop J. M. (1995) Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol. Cell Biol. 15, 3507–3515.

    PubMed  CAS  Google Scholar 

  • Rybin V. O., Xu X., Lisanti M. P., and Steinberg S. F. (2000) Differential targeting of beta-adrenergic receptor subtypes and adenyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J. Biol. Chem. 275, 41,447–41,457.

    Article  PubMed  CAS  Google Scholar 

  • Sargiacomo M., Scherer P. E., Tang Z., Kubler E., Song K. S., Sanders M. C., et al. (1995) Oligomeric structure of caveolin: Implications for caveolae membrane organization. Proc. Natl. Acad. Sci. USA 92, 9407–9411.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel A. and Lisanti M. P. (2000) A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer-oligomer interactions in vivo. J. Biol. Chem. 275, 21605–21617.

    Article  PubMed  CAS  Google Scholar 

  • Schutz G. J., Kada J., Pastushenko V. P., and Schindler H. (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Sehgal P. B., Guo G. G., Shah M., Kumar V., and Patel K. (2002) Cytokine signaling: STATS in plasma membrane rafts. J. Biol. Chem. 277, 12,067–12,074.

    Article  PubMed  CAS  Google Scholar 

  • Shaul P. W. (2003) Endothelial nitric oxid synthase, caveolae and the development of atherosclerosis. J. Physiol. 547, 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Sheets E. D., Lee G. M., Simson R., and Jacobson K. (1997) Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36, 12,449–12,458.

    Article  PubMed  CAS  Google Scholar 

  • Simons K. and Toomre D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Smart E. J., Ying Y. S., Mineo C., and Anderson R. G. W. (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 92, 10,104–10,108.

    Article  PubMed  CAS  Google Scholar 

  • Smart E. J., Ying Y., Donzell W. C., and Anderson R. G. W. (1996) A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271, 29,427–29,435.

    Article  PubMed  CAS  Google Scholar 

  • Smart E. J., Graf G. A., McNiven M. A., Sessa W. C., Engelman J. A., Scherer P. E., et al. (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19, 7289–7304.

    PubMed  CAS  Google Scholar 

  • Sorkin A., Westermark B., Heldin C. H., and Claesson-Welsh L. (1991) Effect of receptor kinase on the rate of internalization and degradation of PDGF and the PDGF beta-receptor. J. Cell. Biol. 112, 469–478.

    Article  PubMed  CAS  Google Scholar 

  • Sowa G., Pypaert M., and Sessa W. C. (2001) Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc. Natl. Acad. Sci. USA 98, 14,072–14,077.

    Article  PubMed  CAS  Google Scholar 

  • Spisni E., Griffoni C., Santi S., Riccio M., Marulli R., Bartolini G., et al. (2001) Colocalization of prostacyclin (PG12) synthase-caveolin-1 in endothelial cells and new roles for PG12 in angiogenesis. Exp. Cell Res. 266, 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Stehr M., Adam R. M., Khoury J., Zhuang L., Solomon K. R., Peters C. A., et al. (2003) J. Platelet-derived growth factor-BB is a potent mitogen for rat ureteral and human bladder smooth muscle cells: dependence on lipid rafts for cell signaling. J. Urol. 169, 1165–1170.

    Article  PubMed  CAS  Google Scholar 

  • Stulnig T. M., Berger M., Sigmund T., Stockinger H., Horejsi V., and Waldhausl W. (1997) Signal transduction via glycosylphosphatidylinositol-anchored proteins in cells is inhibited by lowering cellular cholesterol. J. Biol. Chem. 272, 19,242–19,247.

    Article  PubMed  CAS  Google Scholar 

  • Tauchi-Sato K., Ozeki S., Houjou T., Taguchi R., and Fujimoto T. (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J. Biol. Chem. 277, 44,507–44,512.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen P., Roepstorff K., Stahlhut M., and van Deurs B. (2002) Careolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Cell. Biol. 13, 238–250.

    Article  CAS  Google Scholar 

  • Uittenbogaard A., Ying Y., and Smart E. J. (1998) Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem. 273, 6525–6532.

    Article  PubMed  CAS  Google Scholar 

  • Ushio-Fukai M., Hilenski L., Santanam N., Becker P. L., Ma Y., Griendling K. K., et al. (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 276, 48,269–48,275.

    PubMed  CAS  Google Scholar 

  • Vainio S., Heino S., Mansson J. E., Fredman P., Kuismanen E., Varala O., et al. (2002) Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Rep. 3, 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Varma S. and Mayor S. (1998) GPI-anchored proteins are organized into submicron domains at the cell surface. Nature 394, 798–801.

    Article  PubMed  CAS  Google Scholar 

  • Vereb G., Matkó J., Vamosi G., Ibrahim S. M., Magyar E., Varga S., et al. (2000) Cholesterol-dependent clustering of IL-2R and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc. Natl. Acad. Sci. USA 97, 6013–6018.

    Article  PubMed  CAS  Google Scholar 

  • Wang P. Y., Liu P., Weng J., Sontag E., and Anderson R. G. W. (2003) A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO J. 22, 2658–2667.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y., Yamaguchi K., Wada T., Hata K., Zhao X., Fujimoto T., et al. (2002) A close association of the ganglioside-specific sialidase Neu3 with caveoli membrane microdomains. J. Biol. Chem. 277, 26,252–26,259.

    Article  PubMed  CAS  Google Scholar 

  • Wheaton K., Sampsel K., Boisvert F. M., Davy A., Robbins S., and Riabowol K. (2001) Loss of functional caveolae during senescence of human fibroblasts. J. Cell Physiol. 187, 226–235.

    Article  PubMed  CAS  Google Scholar 

  • Yuan C. and Johnston L. J. (2000) Distribution of ganglioside GM-1 in L-alpha dipalmitoylphosphatidylcholine/cholesterol monolayers: a model for lipid rafts. Biophys. J. 79, 2768–2781.

    PubMed  CAS  Google Scholar 

  • Yuan Y., Verna L. K., Wang N. P., Liao H. L., Ma K. S., Wang Y., et al. (2001) Cholesterol enrichment upregulates intercellular adhesion molecule-1 in human vascular endothelial cells. Biochim. Biophys. Acta 1534, 139–148.

    PubMed  CAS  Google Scholar 

  • Zhu Y., Liao H. L., Wang N., Yuan Y., Ma K. S., Verna L., et al. (2000) Lipoprotein promotes caveolin-1 and Ras translocation to caveolae: role of cholesterol in endothelial signaling. Arterioscler. Thromb. Vasc. Biol. 20, 2465–2470.

    PubMed  CAS  Google Scholar 

  • Zubiaur M., Fernandez O., Ferrero E., Salmeron J., Malissen B., Malavasi F., et al. (2002) CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/protein kinase B and Erk activation in the absdence of the CD3-zeta immune receptor tyrosine-based activation motifs. J. Biol. Chem. 277, 13–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fielding, C.J. (2005). Role of Cholesterol in Membrane Microdomain Signaling. In: Mattson, M.P. (eds) Membrane Microdomain Signaling. Humana Press. https://doi.org/10.1385/1-59259-803-X:071

Download citation

Publish with us

Policies and ethics