Skip to main content

Nonspecific Immunomodulator Therapy

CpG

  • Chapter
Biological Weapons Defense

Part of the book series: Infectious Disease ((ID))

  • 1324 Accesses

Abstract

This chapter focuses on the immunomodulatory effects of synthetic cytosine and guanosine (CpG) DNA and its possible use as a generic therapy against infectious diseases. For many years, research into the development of medical countermeasures against microorganisms that could be used as a biological weapon has focused on the development of vaccines given preexposure and which induce pathogen-specific immune responses. Such vaccines are often highly effective. However, in some situations it may not be possible to immunize populations using vaccines, for example, if an attack is not anticipated, or if there is insufficient time (many vaccine regimes take weeks to generate an effective immune response). Also, for many of these pathogens, licensed vaccines are not available. The possibility of countermeasures that can protect against a range of biological warfare (BW) agents has been a goal of researchers for many years. Such countermeasures would be given shortly before or after exposure to the agents. This could also potentially overcome the limitations of the antimicrobials currently available; there are few available antibiotics effective against the bacterial BW agents and still less antiviral therapies (see Chapter 13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medzhitov, R., Preston-Hurlburt, P., Janeway, C. A. Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397.

    Article  PubMed  CAS  Google Scholar 

  2. Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) A toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.

    Article  PubMed  CAS  Google Scholar 

  3. Brightbill, H. D., Libraty, D. H., Krutzik, S. R., et al. (1999) Host defence mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736.

    Article  PubMed  CAS  Google Scholar 

  4. Poltorak, A., He, X. L., Smirnova, I., et al. (1998) Defective LPS signalling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282, 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  5. Tokunaga, T., Yamamoto, H., Shimada, S., et al. (1984) Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J. Natl. Cancer Inst. 72, 955–962.

    PubMed  CAS  Google Scholar 

  6. Krieg, A. M. (2000) The role of CpG motifs in innate immunity. Curr. Opin. Immunol. 12, 35–43.

    Article  PubMed  CAS  Google Scholar 

  7. Wagner, H. (2001) Toll meets bacterial CpG-DNA. Immunity 14, 499–502.

    Article  PubMed  CAS  Google Scholar 

  8. Wiemann, B. and Starnes, C. O. (1994) Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol. Ther. 64, 529–564.

    Article  PubMed  CAS  Google Scholar 

  9. Tokunaga, T., Yamamoto, S., and Namba, K. (1988) A synthetic single-stranded DNA, poly(dG,dC), induces interferon-α/β and-γ, augments natural killer activity, and suppresses tumor growth. Jpn. J. Cancer Res. 79, 682–686.

    PubMed  CAS  Google Scholar 

  10. Kuramoto, E., Yano, O., Kimura, Y., et al. (1992) Oligonucleotide sequences required for natural killer cell activation. Jpn. J. Cancer Res. 83, 1128–1131.

    PubMed  CAS  Google Scholar 

  11. Neujahr, D. C., Reich, C. F., and Pisetsky, D. S. (1999) Immunostimulatory properties of genomic DNA from different bacterial species. Immunobiology 200, 106–119.

    PubMed  CAS  Google Scholar 

  12. Elkins, K. L., Rhinehart-Jones, T. R., Stibitz, S., Conover, J. S., and Klinman, D. M. (1999) Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J. Immunol. 162, 2291–2298.

    PubMed  CAS  Google Scholar 

  13. Krieg, A. M. (1999) Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides. Biochim. Biophy. Acta 1489, 107–116.

    CAS  Google Scholar 

  14. Zhao, Q., Matson, S., Herrara, C. J., Fisher, E., Yu, H., Waggoner, A., and Krieg, A. M. (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3, 53–56.

    PubMed  CAS  Google Scholar 

  15. Pisetsky, D. S. and Reich, C. F. (1998) The influence of base sequence on the immunological properties of defined oligonucleotides. Immunopharmacology 40, 199–208.

    Article  PubMed  CAS  Google Scholar 

  16. Yu, D., Zhao, Q., Kandimalla, E. R., and Agrawal, S. (2000) Accessible 5′-end of CpG containing phosphorothioate oligodeoxynucleotides is essential for immunostimulatory activity. Bioorg. Med. Chem. Lett. 10, 2585–2588.

    Article  PubMed  CAS  Google Scholar 

  17. Ballas, Z. K., Rasmussen, W. L., and Krieg, A. M. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840–1845.

    PubMed  CAS  Google Scholar 

  18. Krug, A., Rothenfusser, S., Hornung, V., et al. (2001) Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur. J. Immunol. 31, 2154–2163.

    Article  PubMed  CAS  Google Scholar 

  19. Krieg, A. M. (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760.

    Article  PubMed  CAS  Google Scholar 

  20. Boggs, R. T., McGraw, K., Condon, T., et al. (1997) Characterisation and modulation of immune stimulation by modified oligoncleotides. Antisense Nucleic Acid Drug Dev. 7, 461–471.

    PubMed  CAS  Google Scholar 

  21. Waag, D., Heppner, D. G., and Krieg, A. M. (2002) The protective efficacy of CpG oligonucleotides against Glanders. 102nd General Meeting, American Society for Microbiology.

    Google Scholar 

  22. Krieg, A. M., Love-Homan, L., YI, A.-K., and Harty, J. T. (1998) CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J. Immunol. 161, 2428–2434.

    PubMed  CAS  Google Scholar 

  23. Gramzinski, R. A., Doolan, D. L., Sedegah, M., Davis, H. L., Kreig, A. M., and Hoffman, S. L. (2001) Interleukin-12 and gamma interferon dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect. Immun. 69, 1643–1649.

    Article  PubMed  CAS  Google Scholar 

  24. Shimada, S., Yano, O., and Tokunaga, T. (1986) In vivo augmentation of natural killer cell activity with a deoxyribonucleic acid fraction of BCG. Jpn. J. Cancer Res. 77, 808–816.

    PubMed  CAS  Google Scholar 

  25. Yamamoto, S., Yamamoto, T., Shimada, T., et al. (1992) DNA from bacteria, but not vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microb. Immunol. 36, 983.

    CAS  Google Scholar 

  26. Messina, J. P., Gilkeson, G. S., and Pisetsky, D. S. (1991) Simulation of in vitro murine lymphocyte proliferation by bacterial DNA. J. Immunol. 147, 1759–1764.

    PubMed  CAS  Google Scholar 

  27. Krieg, A. M., Yi, A. K., Matson, S., et al. (1995) CpG motifs in bacterial DNA trigger direct B cell activation. Nature 374, 546–549.

    Article  PubMed  CAS  Google Scholar 

  28. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J., and Krieg, A. M. (1996) CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12 and interferon gamma. Proc. Natl. Acad. Sci. USA 93, 2879–2883.

    Article  PubMed  CAS  Google Scholar 

  29. Chu, R. S., Askew, D., Noss, E. H., Tobian, A., Krieg, A. M., and Harding, C. V. (1999) CpG oligodeoxynucleotides down-regulate macrophage class II antigen processing. J. Immunol. 163, 1188–1194.

    PubMed  CAS  Google Scholar 

  30. Takeshita, S., Takeshita, F. Haddad, D. E., Ishii, K. J., and Klinman, D. M. (2000) CpG oligodeoxynucleotides induce murine macrophages to up-regulate chemokine mRNA expression. Cell. Immunol. 206, 101–106.

    Article  PubMed  CAS  Google Scholar 

  31. Hartmann, G. and Krieg, A. M. (1999) CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Ther. 6, 893–903.

    Article  PubMed  CAS  Google Scholar 

  32. Schluesener, H. J., Seid, K., Deininger, M., and Schwab, J. (2001) Transient in vivo activation of rat brain macrophages/microglial cells and astrocytes by immunostimulatory multiple CpG oligonucleotides. J. Neuroimmunol. 113, 89–94.

    Article  PubMed  CAS  Google Scholar 

  33. Bauer, M., Heeg, K., Wagner, H., and Lipford, G. B. (1999) DNA activates human immune cells through a CpG sequence-dependent manner. Immunology 97, 699–705.

    Article  PubMed  CAS  Google Scholar 

  34. Krug, A., Towarowski, A., Britsch, S., et al. (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergises with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037.

    Article  PubMed  CAS  Google Scholar 

  35. Kadowaki, N., Ho, S., Antonenko, S., et al. (2001) Sunsets of human dendritic cell precursors express different toll-like receptors and respond to microbial antigens. J. Exp. Med. 194, 863–870.

    Article  PubMed  CAS  Google Scholar 

  36. Hornung, V., Rothenfusser, S., Britsch, S., et al. (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537.

    PubMed  CAS  Google Scholar 

  37. Askew, D., Chu, R. S., Krieg, A. M., and Harding, C. V. (2000) CpG DNA induces maturation of dendritic cells with distinct effects on nascent and recycling MHC-II antigen-processing mechanisms. J. Immunol. 165, 6889–6895.

    PubMed  CAS  Google Scholar 

  38. Tokunaga, T., Yano, O., Kuramoto, E., et al. Synthetic oligonucleotides with particular base sequences from the cDNA encoding proteins of Mycobacterium bovis BCG induce interferons and activate natural killer cells. Microbiol. Immunol. 36, 55.

    Google Scholar 

  39. Iho, S., Yamamoto, T., Takahashi, T., and Yamamoto, S. (1999) Oligonucleotides containing palindrome sequences with internal 5′-CpG-3′ act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J. Immunol. 163, 3642–3652.

    PubMed  CAS  Google Scholar 

  40. Henry, S. P., Giclas, P. C., Leeds, J., et al. (1997) Activation of the alternative pathway of complement by a phosphorothioate oligonucleotide: potential mechanism of action. J. Pharmacol. Exp. Ther. 281, 810–816.

    PubMed  CAS  Google Scholar 

  41. Ellis, J., Oyston, P. C. F., Green, M., and Titball, R. W. (2002) Francisella tularensis. Clin. Micro. Rev., in press.

    Google Scholar 

  42. Klinman, D. M., Conover, J., and Coban, C. (1999) Repeated administration of synthetic oligodeoxynucleotides expressing CpG motifs provides long-term protection against bacterial infection. Infect. Immun. 67, 5658–5663.

    PubMed  CAS  Google Scholar 

  43. Klinman, D. M., Verthelyi, D., Takeshita, F., and Ishii, K. J. (1999) Immune recognition of foreign DNA: a cure for bioterrorism? Immunity 11, 123–129.

    Article  PubMed  CAS  Google Scholar 

  44. Zimmermann, S., Egeter, O., Hausmann, S., et al. (1998) Cutting edge: CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 160, 3627–3630.

    PubMed  CAS  Google Scholar 

  45. Vogels, M. T. and van der Meer, J. W. (1992) Use of immune modulators in non-specific therapy of bacterial infections. Antimicrob. Agents Chemother. 36, 1–5.

    PubMed  CAS  Google Scholar 

  46. Sajic, D., Ashkar, A. A., Patrick, A. J., et al. (2002) Transmucosal delivery of CpG ODN applied to the genital mucosa protects mice against intravaginal HSV-2 infection. 9th Conference on Retroviruses and Opportunistic Infections.

    Google Scholar 

  47. Krieg, A. M., et al. Clinical trial information. http://www.coleypharma.com

  48. Jiang, W., Quinn, A., and Frothingham, R. (2002) Balb/c mice treated with CpG oligodeoxynucleotide controlled Mycobacterium avium infection. 102nd General Meeting, American Society for Microbiology.

    Google Scholar 

  49. Weighardt, H., Feterowski, C., Veit, M., Rump, M., Wagner, H., and Holzmann, B. (2000) Increased resistance against acute polymicrobial sepsis in mice challenged with immunostimulatory CpG oligodeoxynucleotides is related to an enhanced innate effector cell response. J. Immunol. 165, 4537–4543.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rees, D.G.C., Krieg, A.M., Titball, R.W. (2005). Nonspecific Immunomodulator Therapy. In: Lindler, L.E., Lebeda, F.J., Korch, G.W. (eds) Biological Weapons Defense. Infectious Disease. Humana Press. https://doi.org/10.1385/1-59259-764-5:317

Download citation

  • DOI: https://doi.org/10.1385/1-59259-764-5:317

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-184-4

  • Online ISBN: 978-1-59259-764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics