Skip to main content

Biological Weapons Defense

Effect Levels

  • Chapter
Book cover Biological Weapons Defense

Part of the book series: Infectious Disease ((ID))

Abstract

Many toxins and replicating agents have the potential for malevolent use. Of prime concern is the use of agents or toxins that would affect large populations. Delivery of these agents through food or water is of concern but is restricted by the quantity of agent required, thus limiting use to objectives where less than mass morbidity is intended. Contrary to popular perception, dilution factors and modern food supply refinement (to include water purification) significantly limit the efficient use of biological agents by the oral route of exposure (1). Biological threat agents are most likely to be effectively delivered covertly and by aerosol in a biological warfare or terrorism scenario. Estimations of potential exposure levels have been derived to assist medical planners, logisticians, and field officers in predicting biological warfare contingency requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burrows, W. D. and Renner, S. E. (1999) Biological warfare agents as threats to potable water. Environ. Health Perspect. 107, 975–984.

    Article  PubMed  CAS  Google Scholar 

  2. NATO. (1999) Medical Planning Guide for the Estimation of NBC Battle Casualties, Biological AMed P-8(A), Volume II, Ratification Draft 1. North Atlantic Treaty Organization (NATO).

    Google Scholar 

  3. Macintyre, A. G., Christopher, G. W., Eitzen, E., Jr., et al. (2000) Weapons of mass destruction events with contaminated casualties: effective planning for health care facilities. JAMA 283, 242–249.

    Article  PubMed  CAS  Google Scholar 

  4. Voelker, R. (2002) Bioweapons preparedness chief discusses priorities in world of 21st-century biology. JAMA 287, 573–576.

    Article  Google Scholar 

  5. Waeckerle, J. F. (2002) Domestic preparedness for events involving weapons of mass destruction. JAMA 283, 252–254.

    Article  Google Scholar 

  6. Webb, S. J. (1963) Factors affecting the viability of air-borne bacteria. Can. J. Biochem. 41, 867–873.

    PubMed  CAS  Google Scholar 

  7. Stephenson, E. H., Larson, E. W., and Dominik, J. W. (1984) Effect of environmental factors on aerosol-induced lassa virus infection. J. Med. Virol. 14, 295–303.

    Article  PubMed  CAS  Google Scholar 

  8. Harper, G. J. (1961) Airborne micro-organisms: survival tests with four viruses. J. Hyg. Cambridge 59, 479–486.

    Article  CAS  Google Scholar 

  9. Goldberg, L. J., Watkins, H. M. S., Boerke, E. E., and Chatgny, M. A. (1958) The use of a rotating drum for the study of aerosols over extended periods of time. Am. J. Hyg. 68, 85–93.

    PubMed  CAS  Google Scholar 

  10. Bide, R. W., Armour, S. J., (2000) Yee, E. Allometric respiration/body mass data for animals to be used for estimates of inhalation toxicity to young adult humans. J. Appl. Toxicol. 20, 273–290.

    Article  PubMed  CAS  Google Scholar 

  11. FM 8–9, NATO handbook on the medical aspects of NBC defensive operations AMedP-6(B), Part II Biological. Dept. Army, 1996.

    Google Scholar 

  12. Ferguson, J. R. (1997) Biological weapons and US law. JAMA 278, 357–360.

    Article  PubMed  CAS  Google Scholar 

  13. Spertzel, R. O., Wannemacher, R. W., Patrick, W. C., Linden, C. D., and Franz, D. R. (1992) Technical ramifications of inclusion of toxins in the chemical weapons convention (CWC). Frederick: US Army Medical Research Institute of Infectious Diseases.

    Google Scholar 

  14. Wannemacher, R. W. and Wiener, S. L. (1997) Trichothecene mycotoxins, in: Textbook of Military Medicine: Medical Aspects of Chemical and Biological Warfare. (Zatjchuk, R., ed.), Borden Institute, Washington, D.C., pp. 658.

    Google Scholar 

  15. Henderson, D. A. (1999) The looming threat of bioterrorism. Science 283, 1279–1282.

    Article  PubMed  CAS  Google Scholar 

  16. Bauer, T. J. and Gibbs, R. L. (1994) Software users manual for the chemical/biological agent vapor, liquid, and solid tracking (VLSTRACK) computer model. 2.0 ed. Dahlgren, VA: Naval Surface Weapons Center.

    Google Scholar 

  17. Guyton, A. C. (1947) Measurement of the respiratory volumes of laboratory animals. Am. J. Physiol. 150, 70–77.

    CAS  PubMed  Google Scholar 

  18. Tucker, J. B. (1999) Historical trends related to bioterrorism: an empirical analysis. Emerg. Infect. Dis. 5, 498–504.

    Article  PubMed  CAS  Google Scholar 

  19. Hurst, E. W. (1936) Infection of Rhesus monkey (Macaca mulatta) and the guinea-pig with the virus equine encephalomyelitis. J. Pathol. Bacteriol. 42, 271–302.

    Article  Google Scholar 

  20. Lub, M., Sergeev, A. N., P’yankova, O. G., P’yankov, O. V., Petrishchenko, V. A., and Kotyarov, L. A. (1996) Clinical and virological characterization of the disease in guinea pigs aerogenically infected with marburg virus. Russian Prog. Virol. 3, 34–37.

    Google Scholar 

  21. Jahrling, P. J. (1997) Viral hemorrhagic fevers, in: Textbook of Military Medicine: Medical Aspects of Chemical and Biological Warfare. (Zatjchuk, R., ed.), Borden Institute, Washington, D.C., pp. 591–602.

    Google Scholar 

  22. Friedlander, A. M. (1997) Anthraxin, in: Textbook of Military Medicine: Medical Aspects of Chemical and Biological Warfare. (Zatjchuk, R., ed.), Borden Institute, Washington, D.C., pp. 467–478.

    Google Scholar 

  23. Abramova, F. A., Grinberg, L. M., Yampolskaya, O. V., and Walker, D. H. (1993) Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proc. Natl. Acad. Sci. USA 90, 2291–2294.

    Article  PubMed  CAS  Google Scholar 

  24. Grinberg, L. M., Abramova, F. A., Yampolskaya, O. V., Walker, D. H., and Smith, J. H. (2001) Quantitative pathology of inhalational anthrax I: quantitative microscopic findings. Mod. Pathol. 14, 482–495.

    Article  PubMed  CAS  Google Scholar 

  25. Franz, D. R. and Zajtchuk, R. (2000) Biological terrorism: understanding the threat, preparation, and medical response. Disease-a-month 46, 129–192.

    Article  Google Scholar 

  26. Inglesby, T. V., O’Toole, T., Henderson, D. A., et al. (2002) Anthrax as a biological weapon, 2002; updated recommendation for management. JAMA 287, 2236–2252.

    Article  PubMed  Google Scholar 

  27. Lincoln, R. E., Walker, J. S., Klein, F., Rosenwald, A. J., and Jones, W. I. J. (1967) Value of field data or extrapolation in anthrax. Fed. Proc. 26, 1558–1562.

    PubMed  CAS  Google Scholar 

  28. Lebeda, F. J. (1997) Deterrence of biological and chemical warfare: a review of policy options. Mil. Med. 162, 156–161.

    PubMed  CAS  Google Scholar 

  29. Holzer, E. (1962) Botulism caused by inhalation. Med. Klin. 41, 1735–1740.

    Google Scholar 

  30. Rood, J. I., McClane, B. A., Songer, J. G., and Titball, R. W. (1997) The Clostridia. Molecular Biology and Pathogenesis of the Clostridia. Academic, London.

    Google Scholar 

  31. Baldwin, L., Henderson, A., Wright, M., and Whitby, M. (1993) Spontaneous Clostridium perfringens lung abscess unresponsive to penicillin. Anaesth. Intensive Care 21, 117–119.

    PubMed  CAS  Google Scholar 

  32. Kwan, W. C., Lam, S. C., Chow, A. W., Lepawski, M., and Glanzberg, M. M. (1983) Empyema caused by Clostridium perfringens. Can. Med. Assoc. J. 128, 1420–1422.

    PubMed  CAS  Google Scholar 

  33. Jackson, R. J., Ramsay, A. J., Christensen, C. D., Beaton, S., Hall, D. F., and Ramshaw, I. A. (2001) Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 75, 1205–1210.

    Article  PubMed  CAS  Google Scholar 

  34. Stephenson, J. (2001) Biowarfare warning. JAMA 285, 725.

    Article  Google Scholar 

  35. Cross, J. T. and Altemeier, W. A. (2000) Skin manifestations of bioterrorism. Pediatr. Ann. 29, 7–9.

    PubMed  Google Scholar 

  36. Kruse, R. H. and Wedum, A. G. (1970) Cross infection with eighteen pathogens among caged laboratory animals. Lab. Anim. Care 20, 541–558.

    PubMed  CAS  Google Scholar 

  37. Hawkes, N. (1979) Science in Europe: smallpox death in Britain challenges presumptions of laboratory safety. Science 203, 855,856.

    Article  PubMed  CAS  Google Scholar 

  38. Henderson, D. A., Inglesby, T. V., Bartlett, J. G., et al. (1999)Smallpox as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA 281, 2127–2137.

    Article  PubMed  CAS  Google Scholar 

  39. Inglesby, T. V., Dennis, D. T., Henderson, D. A., et al. (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA 283, 2281–2290.

    Article  PubMed  CAS  Google Scholar 

  40. Inglesby, T. V., Henderson, D. A., O’Toole, T., and Dennis, D. T. (2000) Safety precautions to limit exposure from plague-infected patients. JAMA 284, 1648,1649.

    Google Scholar 

  41. Jaax, N., Jahrling, P., Geisbert, T., et al. (1995) Transmission of Ebola virus (Zaire strain) to uninfected control monkeys in a biocontainment laboratory. Lancet 346, 1669–1671.

    Article  PubMed  CAS  Google Scholar 

  42. Johnson, E., Jaax, N., White, J., and Jahrling, P. (1995) Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus. Int. J. Exp. Pathol. 76, 227–236.

    PubMed  CAS  Google Scholar 

  43. Bazhutin, N. B., Belanov, E. F., Spirdonov, V. A., et al. (1992) The influence of the methods of experimental infection with marburg virus on the course of illness in green monkeys. Vopr. Virusol. 3, 153–156.

    Google Scholar 

  44. Kodama, M., Ogata, T., and Sato, S. (1988) Bacterial production of saxitoxin. Agric. Biol. Chem. 52, 1075–1077.

    CAS  Google Scholar 

  45. Kodama, M., Ogata, T., Sakamoto, S., Honda, T., and Miwatani, T. (1990) Production of paralytic shellfish toxins by a bacterium Moraxella sp. isolated from Protogonyaulax tamarensis. Toxicon 28, 707–714.

    Article  PubMed  CAS  Google Scholar 

  46. Finer, J. J. (1999) Plant protein secretion on tap. Nat. Biotechnol. 17, 427.

    Article  PubMed  CAS  Google Scholar 

  47. Wilhelmsen, C. L. and Pitt, M. L. (1996) Lesions of acute inhaled lethal ricin intoxication in rhesus monkeys. Vet. Pathol. 33, 296–302.

    Article  PubMed  CAS  Google Scholar 

  48. Brown, R. F. and White, D. E. Ultrastructure of rat lung following inhalation of ricin aerosol. Int. J. Exp. Pathol. 78, 267–276.

    Google Scholar 

  49. Zhang, Z. and Kleinstreuer, C. Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model. J. Aerosol Med. 14, 13–29.

    Google Scholar 

  50. Zhang, Z., Kleinstreuer, C., and Kim, C. S. (2000) Effects of asymmetric branch flow rates on aerosol deposition in bifurcating airways. J. Med. Eng. Technol. 24, 192–202.

    Article  PubMed  CAS  Google Scholar 

  51. Gelzleichter, T. R., Myers, M. A., Menton, R. G., Niemuth, N. A., Matthews, M. C., and Langford, M. J. (1999) Protection against botulinum toxins provided by passive immunization with botulinum human immune globulin: evaluation using an inhalation model. J. Appl. Toxicol. 19(Suppl 1), S35–38.

    Article  PubMed  CAS  Google Scholar 

  52. Byrne, M. P. and Smith, L. A. (2000) Development of vaccines for prevention of botulism. Biochimie 82, 955–966.

    Article  PubMed  CAS  Google Scholar 

  53. Byrne, M. P., Titball, R. W., Holley, J., and Smith, L. A. (2000) Fermentation, purification, and efficacy of a recombinant vaccine candidate against botulinum neurotoxin type F from Pichia pastoris. Protein Expr. Purif. 18, 327–337.

    Article  PubMed  CAS  Google Scholar 

  54. LeClaire, R. D., Hunt, R. E., and Bavari, S. (2002) Protection against bacterial superantigen staphylococcal enterotoxin B by passive vaccination. Infect. Immun. 70, 2278–2281.

    Article  PubMed  CAS  Google Scholar 

  55. Bavari, S., Ulrich, R. G., and LeClaire, R. D. (1999) Cross-reactive antibodies prevent the lethal effects of Staphylococcus aureus superantigens. J. Infect. Dis. 180, 1365–1369.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

LeClaire, R.D., Pitt, M.L.M. (2005). Biological Weapons Defense. In: Lindler, L.E., Lebeda, F.J., Korch, G.W. (eds) Biological Weapons Defense. Infectious Disease. Humana Press. https://doi.org/10.1385/1-59259-764-5:041

Download citation

  • DOI: https://doi.org/10.1385/1-59259-764-5:041

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-184-4

  • Online ISBN: 978-1-59259-764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics