Skip to main content

Distributed-Feedback Lasers

  • Chapter
  • First Online:
  • 7099 Accesses

Most of the lasers that have been described so are depend on optical feedback from a pair of reflecting surfaces, which form a Fabry-Perot etalon. In an optical integrated circuit, in which the laser diodes are monolithically integrated within the semiconductor wafer, it is usually very difficult to form such reflecting surfaces. They can be formed by etching or cleaving, as described in Chapter 14. However, the planar surface of the wafer is then disrupted, which leads to difficulties in fabricating electrical connections and heat sinks. An alternative approach, which utilizes distributed-feedback (DFB) from a Bragg-type diffraction grating, provides a number of advantages while still utilizing a planar surface geometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Z.G. Pinsker: Dynamical Scattering of X Rays in Crystals, Springer Ser. Solid-State Sci., Vol. 3 (Springer, Berlin, Heidelberg 1978)

    Book  Google Scholar 

  2. B.K. Agarwal: X-Ray Spectroscopy, 2nd edn., Springer Ser. Opt. Sci., Vol. 15 (Springer, Berlin, Heidelberg 1991)

    Book  Google Scholar 

  3. H. Kogelnik, C.V. Shank: J. Appl. Phys. 43, 2327 (1972)

    Article  ADS  Google Scholar 

  4. A. Yariv: IEEE J. QE-9, 919 (1973)

    Article  Google Scholar 

  5. S. Wang: IEEE J. QE-10, 413 (1974)

    Article  Google Scholar 

  6. D.R. Scifres, R.D. Burnham, W. Streifer: Appl. Phys. Lett. 26, 48 (1975)

    Article  ADS  Google Scholar 

  7. W. Streifer, D.R. Scifres, R.D. Burnham: IEEE J. QE-11, 867 (1975)

    Article  Google Scholar 

  8. A. Yariv: Optical Electronics, 4th edn. (Holt, Rinhart, Winston, New York 1991) p. 503

    Google Scholar 

  9. R. Buchmann, H. Dietrich, G. Sasso, P. Vettiger: Microelectron. Eng. 9, 485 (1989)

    Article  Google Scholar 

  10. D.R. Scifres, R. Burnham, W. Streifer: Appl. Phys. Lett. 25, 203 (1974)

    Article  ADS  Google Scholar 

  11. M. Nakamura, K. Aiki, J. Umeda, A. Yariv: Appl. Phys. Lett. 27, 403 (1975)

    Article  ADS  Google Scholar 

  12. K. Aiki, M. Nakamura, J. Umeda: IEEE J. QE-12, 597 (1976)

    Article  Google Scholar 

  13. S. Tsuji, A. Ohishi, N. Nakamura, M. Hirao, N. Chinone, H. Matsumura: IEEE J. LT-5, 822 (1987)

    Google Scholar 

  14. P. Bhattacharya: Semiconductor Optoelectronic Devices (Prentice-Hall, Englewood Cliffs, NJ 1994) pp. 286–292

    Google Scholar 

  15. S. Tsuji, K. Mizuishi, M. Hirao, M. Nakamura: IEEE Int’l Conf. on Communications, Amsterdam, The Netherlands (1984) Proc. p. 1123

    Google Scholar 

  16. R. Martin, S. Forouhar, S. Keo, R. Lang, R.G. Hunsperger, R. Tiberio, P. Chapman: Electron. Lett. 30, 1058 (1994)

    Article  Google Scholar 

  17. S. Wang: IEEE J. QE-10, 413 (1974)

    Article  Google Scholar 

  18. H.M. Stoll: IEEE Trans. CAS-26, 1065 (1979)

    Article  ADS  Google Scholar 

  19. S.L. Lee, I.F. Jang, C.Y. Wang, C.T. Pien, T.T. Shih: Monolithically integrated multi-wavelength sampled grating DBR lasers for dense WDM applications. IEE J. Selected Topics Quant. Electron. 6, 197 (2000)

    Article  Google Scholar 

  20. R. Kaiser, F. Fidorra, H. Heidrich, P. Albrecht, W. Rehbein, S. Malchow, H. Schroeter-Janssen, D. Franke, G. Sztefka: 6th Int’l Conf. on InP and Related Materials. Santa Barbara, CA (1994) Proc. p. 474

    Google Scholar 

  21. W. Tsang, M. Wu. Y. Chen, F. Choa, R. Logan, S. Chu, A. Sergent, P. Magill, K. Reichmann, C. Burrus: IEEE J. QE-30, 1370 (1994)

    Article  Google Scholar 

  22. K. Kudo, M. Ishizaka, T. Sasaki, H. Yamazaki, M. Yamaguchi: 1.52–1.59 μm range different-wavelength modulator-integrated DFB-LD’s fabricated on a single wafer. IEEE Photon Tech. Lett. 10, 929 (1998)

    Article  ADS  Google Scholar 

  23. H. Schweizer, H. Gräbeldinger, V. Dumitru, M. Jetter, S. Bader, G. Brüderl, A. Weimar, A. Lell, V. Härle: Laterally coupled InGaN/GaN DFB laser diodes, Physica Status Solidi (a) 192, 301 (2002)

    Article  ADS  Google Scholar 

  24. M. Nakamura, H.W. Yen, A. Yariv, E. Garmine, S. Somekh, H.L. Garvin: Appl. Phys. Lett. 23, 224 (1973)

    Article  ADS  Google Scholar 

  25. H.A. Haus, C.V. Shank: IEEE J. QE-12, 532 (1976)

    Article  Google Scholar 

  26. S. Akiba, Y. Matsushima, M. Usami, K. Utaka: Electron. Lett. 23, 316 (1987)

    Article  Google Scholar 

  27. W. Tsang, R. Kapre, R. Logan, T. Tanbun-Ek: IEEE Photon. Tech. Lett. 5, 978 (1993)

    Article  ADS  Google Scholar 

  28. M. Okai, T. Tsuchiya: Electron. Lett. 29, 349 (1993)

    Article  Google Scholar 

  29. H. Mawatari, F. Kano, N. Yamomoto, Y. Kondo, Y. Tohmori, Y. Yoshikun: Jpn. J. Appl. Phys. Pt. 1. 33, 811 (1994)

    Article  Google Scholar 

  30. M. Okai, A. Tsuchiya, A. Takai, N. Chinone: IEEE Photon. Tech. Lett. 4, 526 (1992)

    Article  ADS  Google Scholar 

  31. S. Takigawa, T. Uno, M. Kume, K. Hamada, N. Yoshikawa, H. Shimizu, G. Kano: IEEE J. QE-25, 1489 (1989)

    Article  Google Scholar 

  32. G. Giuliani, M. Norgia: Diode laser linewidth measurement by means of self-mixing interferometry. IEEE Phot. Tech. Lett. 12, 1028 (2000)

    Article  ADS  Google Scholar 

  33. K.C. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, S. Arai: Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities. IEEE Photon. Tech. Lett. 7, 1119 (1991)

    Article  ADS  Google Scholar 

  34. T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung, A. Matsutani, T. Mukaihara, F. Koyama, K. Iga: A novel short-cavity laser with deep-grating distributed Bragg reflectors, Jpn. J. Appl. Phys. 35, 1390 (1996)

    Article  ADS  Google Scholar 

  35. R. Jambunathan, J. Singh: Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers. IEEE J. Quant. Electron. 33, 1180 (1997)

    Article  ADS  Google Scholar 

  36. S. Oku, T. Ishii, R. Iga, T. Hirono: Fabrication and performance of AlGaAs-GaAs distributed Bragg reflector lasers and distributed feedback lasers utilizing first-order diffraction gratings formed by a periodic groove structure. IEEE J. Selected Topics Quant. Electron. 5, 682 (1999)

    Article  Google Scholar 

  37. E. Hofling, F. Schafer, J. Reithmaier, A. Forchel: Edge-emitting GaInAs-AlGaAs microlasers, IEEE Photon. Tech. Lett. 11, 943 (1999)

    Article  ADS  Google Scholar 

  38. T. Mukaihara, N. Yamanaka, N. Iwai, M. Funabashi, S. Arakawa, T. Ishikawa, A. Kasukawa: Integrated GaInAsP laser diodes with monitoring photodiodes through semiconductor/air Bragg reflector (SABAR). IEEE J. Selected Topics Quant. Electron. 5 469 (1999)

    Article  Google Scholar 

  39. P. Michler, (ed.): Single Quantum Dots-Fundamentals, Applications and New Concepts, Springer Topics in Applied Physics Series, vol. 90 (Springer, Berlin, Heidelberg, 2003)

    Google Scholar 

  40. H. Schweizer, M. Jetter, F. Scholz: Quantum-Dot Lasers, Springer Topics in Applied Physics Series, vol. 90 (Springer, Berlin, Heidelberg, 2003)

    Google Scholar 

  41. J.S. Kim, C-R. Lee, H-S. Kwack, B.S. Choi, E. Sim, C.W. Lee, D.K. Oh: 1.55 μm InAs/InAlGaAs quantum dot DFB lasers, IEEE Trans. Nanotechnol. 7, 128 (2008)

    ADS  Google Scholar 

  42. H. Su, L.F. Lester: Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp, J. Phys. D: Appl. Phys. 38, 2112 (2005)

    Article  ADS  Google Scholar 

  43. M. Kamp, M. Schmitt, J. Hofmann, F. Schafer, J.P. Reithmaier, A. Forchel: InGaAs/AlGaAs quantum dot DFB lasers operating up to 213°C, Electron. Lett. 35, 2036 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunsperger, R.G. (2009). Distributed-Feedback Lasers. In: Integrated Optics. Springer, New York, NY. https://doi.org/10.1007/b98730_15

Download citation

Publish with us

Policies and ethics