Skip to main content

Mass Sensors

  • Chapter
  • First Online:

Abstract

Change of mass accompanies many interactions of the chemical species with the sensor. Not surprisingly, mass sensors represent an important segment of the chemical sensing field. From the measurement point of view, the determination of mass is called gravimetry. Although scales and balances are standard equipment in any chemical laboratory, they are not usually thought of as sensors. On the other hand, when we talk about microbalances and microgravimetry (Lu and Czaderna, 1984), we regard them as sensors. The transduction principle is the detection of the change of mass through the changes in behavior of some oscillator. Because of their small size, high sensitivity, and stability, piezoelectric crystals have been used asmicrobalances, namely in the determination of the thicknesses of thin layers and in general gas sorption studies (King, 1964). At the beginning of their development, mass sensors were synonymous with the quartz crystal microbalance (QCM).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

     “Quality factor” (Q-factor) compares the frequency of oscillation to the rate of dissipation of energy of the oscillating system. Higher Q indicates less energy dissipation, relative to the oscillating frequency.

  2. 2.

    Ho (1984).

Abbreviations

\(\Delta A_{v}\) :

Attenuated amplitude

B :

Susceptance

\(C_{\rm gas}\) :

Concentration of a gas

C :

Capacitance

\(C_{\rm q}\) :

Crystal constant

\(D_{\rm crit}\) :

Optimum diameter

E :

Young's modulus

\(E_{\rm c}\) :

Collection efficiency

F :

Linear frequency; linear frequency

\(F_{\rm f}\) :

Resonant frequency of the crystal with material deposited on it

G :

Conductance

H :

Transfer function

I :

(or i) Current

j :

Standard notation for an imaginary number

k :

Material constant

K :

Spring constant

l :

Length

L :

Inductance

M :

Mass

\(n_{\rm c}\) :

Geometrically dependent correction factor

p :

Center-to-center finger spacing

P :

Gas pressure

R :

Resistance

\(R_{\rm n}\) :

Reynolds number; a fluid mechanics term. It is a dimensionless ratio of inertial and viscous properties of the fluid. It is a figure of merit for a given fluid.

S :

Sensitivity

t :

Thickness

v :

Shear velocity

V :

Voltage

w :

Width

Y :

Admittance

Z :

Acoustic impedances

δ:

Damping distance

\(\kappa_{\rm L}\) :

Kinematic viscosity

π:

Mathematical constant 3.1415

λ:

Wavelength

μ:

Shear modulus

ρ:

Density

η:

Viscosity

θ:

Phase angle

ϕ:

Phase shift

σ:

Stress

ω:

Angular frequency

\(\xi_{\rm P}\) :

Poisson ratio

\(\zeta\) :

Parameter defining the acoustic matching of a crystal and film material

\(\chi_{\Lambda}\) :

Lame constant

  • Arntz, Y., Seelig, J.D., Lang, H.P., Zhang, J., Hunziker, P., Ramseyer, J.P., Meyer, E., Hegner, M., and Gerber, C.(2003)Nanotechnology14, 86.

    Article  CAS  Google Scholar 

  • Battiston, F.M., Ramseyer, J.-P., Lang, H.P., Baller, M.K., Gerber, C., Gimzewski, J.K., Meyer, E., and Güntherodt, H.-J.(2001)Sens. ActuatorsB 77, 122.

    Google Scholar 

  • Binning, G., Quate, C.F., and Gerber, C.(1986)Phys. Rev. Lett. 56, 930.

    Article  Google Scholar 

  • Bizet, K., Gabrielli, C., Perrot, H., and Therasse, J.(1998)Biosens. Bioelectron. 13, 259–269.

    Article  Google Scholar 

  • Bruckenstein, S., Michalski, M., Fensore, A., Zhufen, K., and Hillman, A.R.(1994)Anal. Chem. 66, 1847.

    Article  CAS  Google Scholar 

  • Chon, J.W.M., Mulvaney, P., and Sader, J.E.(2000)J. Appl. Phys. 87, 3978.

    Article  CAS  Google Scholar 

  • D'Amico, A., PalmaA., and Verona, E.(1982/83)Sens. Actuators3, 31.

    Google Scholar 

  • Dunham, G.C., Benson, N.H., Petelenz, D., and Janata, J.(1995)Dual quartz crystal microbalance. Anal. Chem. 67, 267–272.

    Google Scholar 

  • Gimzewski, J.K., Gerber, C., Meyer, E., and Schlittler, R.R.(1993)Chem . Phys. Lett. 217, 589.

    Article  Google Scholar 

  • Grate, J.W., Martin, S.J., and White, R.M.(1993)Anal. Chem. 65940A; 987A.

    Article  Google Scholar 

  • Hillier, A.C. and Ward, M.D.(1992)Anal. Chem. 64, 2539.

    Article  CAS  Google Scholar 

  • Ho, M.H. (1984) Application of quartz crystal microbalances in aerosol mass measurement. In: C. Lu and A.W. Czaderna (Eds.) Methods and Phenomena, Vol. 7. Elsevier.

    Google Scholar 

  • Janshoff, A., Galla, H.-J., and Steinem, C.(2000)Angew. Chem. Int. Ed. 39, 4004–4032.

    Google Scholar 

  • Kanazawa, K.K. and Gordon, J.G.(1985)Anal. Chem. 57, 1770.

    Article  CAS  Google Scholar 

  • Kim, B.H., Prins, F.E., Kern, D.P., Raible, S., and Weimar, U.(2001)Sens. Actuators B78, 12.

    Article  Google Scholar 

  • King, Jr., W.H.(1964)Anal. Chem. 36, 1735.

    Article  CAS  Google Scholar 

  • Lin, Z. and Ward, M.D.(1995)Anal. Chem. 67, 685.

    Article  CAS  Google Scholar 

  • Lu, C. and Czaderna, A.W. (Eds.) (1984) Methods and Phenomena, Vol. 7. Elsevier.

    Google Scholar 

  • Martin, B.A. and Hager, H.E.(1989a)J. Appl. Phys. 65, 2627.

    Article  Google Scholar 

  • Martin, B.A. and Hager, H.E.(1989b)J. Appl. Phys. 65, 2630.

    Article  Google Scholar 

  • Mason, W.P. (1965) Physical Acoustics, Vol. 2A. Academic Press.

    Google Scholar 

  • Marx, K.A.(2003)Biomacromolecules4, 1099–1120.

    Article  Google Scholar 

  • Ricco, A.J., Martin, S.J., and Zipperian, T.E.(1985)Sens. Actuators8, 319.

    Article  CAS  Google Scholar 

  • Ricco, A.J., Crooks, R.M., and Osbourn, G.C.(1998)Acct. Chem. Res. 31, 289.

    Article  CAS  Google Scholar 

  • Ristic, V.M. (1983) Principles of Acoustic Devices. Wiley.

    Google Scholar 

  • Schneider, T.W. and Martin, S.J.(1995)Anal. Chem. 67, 3324.

    Article  CAS  Google Scholar 

  • Theisen, L.A.MartinS.J., and HillmanA.R.(2004)Anal. Chem. 76, 796–804.

    Article  Google Scholar 

  • White, R.M., Wicher, P.J., Wenzel, S.W., and Zellers, E.T.(1987)IEEE Trans. Ultrason. Dev. Ferroel. Freq. Contr. UFFC-34, 162.

    Article  Google Scholar 

  • Wohltjen, H. and Dessy, R.(1979)Anal. Chem. 51, 1465.

    Article  CAS  Google Scholar 

  • Yang, M. and Thompson, M.(1993)Anal. Chem. 65, 1158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiˇí Janata .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Janata, J. (2009). Mass Sensors. In: Principles of Chemical Sensors. Springer, Boston, MA. https://doi.org/10.1007/b136378_4

Download citation

Publish with us

Policies and ethics