Skip to main content

Diphtheria toxin, diphtheria-related fusion protein toxins, and the molecular mechanism of their action against eukaryotic cells

  • Chapter
  • First Online:
Microbial Protein Toxins

Part of the book series: Topics in Current Genetics ((TCG,volume 11))

Abstract

Diphtheria toxin remains one of the most successfully studied of the bacterial protein toxins. A detailed understanding of the structure function relationships of the toxin and the role of each domain in the intoxication process is well understood. This understanding has led to the development of diphtheria toxin-related fusion protein toxins which are targeted toward specific cell surface receptors. The first of these targeted toxins are now approved for human clinical use in the treatment of refractory hematologic malignancies and graft-versus-host disease. In recent years, studies on the molecular mechanism by which the diphtheria toxin catalytic domain is translocated across the early endosomal membrane has revealed that a host cell cytosolic translocation factor complex facilitates the entry process. A detailed understanding of this process will further stimulate the development of new approaches toward the delivery of cargo, ranging from protein to nucleic acid and/or protein nucleic acids, to the eukaryotic cell cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Aniento F, Gu F, Parton RG, Gruenberg J (1996) An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol 133:29-41

    Article  CAS  PubMed  Google Scholar 

  • 2. Ariansen S, Afanasiev BN, Moskaug JO, Stenmark H, Madshus IH, Olsnes S (1993) Membrane translocation of diphtheria toxin A-fragment: role of carboxy-terminal region. Biochemistry 32:83-90

    CAS  PubMed  Google Scholar 

  • 3. Bacha P, Williams DP, Waters C, Williams JM, Murphy JR, Strom TB (1988) Interleukin 2 receptor-targeted cytotoxicity. Interleukin 2 receptor-mediated action of a diphtheria toxin-related interleukin 2 fusion protein. J Exp Med 167:612-622

    Article  CAS  PubMed  Google Scholar 

  • 4. Bennett MJ, Choe S, Eisenberg D (1994) Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci USA 91:3127-3131

    CAS  PubMed  Google Scholar 

  • 5. Blewitt MG, Chung LA, London E (1985) Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry 24:5458-5464

    CAS  PubMed  Google Scholar 

  • 6. Bomsel M, Parton R, Kuznetsov SA, Schroer TA, Gruenberg J (1990) Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62:719-731

    Article  CAS  PubMed  Google Scholar 

  • 7. Boquet P, Pappenheimer AM Jr (1976) Interaction of diphtheria toxin with mammalian cell membranes. J Biol Chem 251:5770-5778

    CAS  PubMed  Google Scholar 

  • 8. Bosshart H, Humphrey J, Deignan E, Davidson J, Drazba J, Yuan L, Oorschot V, Peters PJ, Bonifacino JS (1994) The cytoplasmic domain mediates localization of furin to the trans-Golgi network en route to the endosomal/lysosomal system. J Cell Biol 126:1157-1172

    Article  CAS  PubMed  Google Scholar 

  • 9. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972-7976

    CAS  PubMed  Google Scholar 

  • 10. Brandl CJ, Deber CM (1986) Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci USA 83:917-921

    CAS  PubMed  Google Scholar 

  • 11. Cabiaux V, Quertenmont P, Conrath K, Brasseur R, Capiau C, Ruysschaert JM (1994) Topology of diphtheria toxin B fragment inserted in lipid vesicles. Mol Microbiol 11:43-50

    CAS  PubMed  Google Scholar 

  • 12. Carroll SF, Collier RJ (1984) NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci USA 81:3307-3311

    CAS  PubMed  Google Scholar 

  • 13. Chang MP, Mallet WG, Mostov KE, Brodsky FM (1993) Adaptor self-aggregation, adaptor-receptor recognition and binding of alpha-adaptin subunits to the plasma membrane contribute to recruitment of adaptor (AP2) components of clathrin-coated pits. EMBO J 12:2169-2180

    CAS  PubMed  Google Scholar 

  • 14. Clague MJ, Urbe S, Aniento F, Gruenberg J (1994) Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol Chem 269:21-24

    CAS  PubMed  Google Scholar 

  • 15. Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357:216-222

    Article  CAS  PubMed  Google Scholar 

  • 16. Collier RJ, Cole HA (1969) Diphtheria toxin subunit active in vitro. Science 164:1179-1181

    CAS  PubMed  Google Scholar 

  • 17. Collier RJ, Kandel J (1971) Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymatically active and inactive fragments. J Biol Chem 246:1496-1503

    CAS  PubMed  Google Scholar 

  • 18. Damke H, Gossen M, Freundlieb S, Bujard H, Schmid SL (1995) Tightly regulated and inducible expression of dominant interfering dynamin mutant in stably transformed HeLa cells. Methods Enzymol 257:209-220

    Article  CAS  PubMed  Google Scholar 

  • 19. Deber CM, Glibowicka M, Woolley GA (1990) Conformations of proline residues in membrane environments. Biopolymers 29:149-157

    CAS  PubMed  Google Scholar 

  • 20. Donovan JJ, Simon MI, Draper RK, Montal M (1981) Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc Natl Acad Sci USA 78:172-176

    CAS  PubMed  Google Scholar 

  • 21. Dorland RB, Middlebrook JL, Leppla SH (1979) Receptor-mediated internalization of diphtheria toxin by monkey kidney cells. J Biol Chem 254:11337-11342

    CAS  PubMed  Google Scholar 

  • 22. Drazin R, Kandel J, Collier RJ (1971) Structure and activity of diphtheria toxin. II. Attack by trypsin at a specific site within the intact toxin molecule. J Biol Chem 246:1504-1510

    CAS  PubMed  Google Scholar 

  • 23. Falnes PO, Madshus IH, Sandvig K, Olsnes S (1992) Replacement of negative by positive charges in the presumed membrane-inserted part of diphtheria toxin B fragment. Effect on membrane translocation and on formation of cation channels. J Biol Chem 267:12284-12290

    CAS  PubMed  Google Scholar 

  • 24. Falnes PO, Choe S, Madshus IH, Wilson BA, Olsnes S (1994) Inhibition of membrane translocation of diphtheria toxin A-fragment by internal disulfide bridges. J Biol Chem 269:8402-8407

    CAS  PubMed  Google Scholar 

  • 25. Fingerhut A, von Figura K, Honing S (2001) Binding of AP2 to sorting signals is modulated by AP2 phosphorylation. J Biol Chem 276:5476-5482

    Article  CAS  PubMed  Google Scholar 

  • 26. Freedman RB, Bulleid NJ, Hawkins HC, Paver JL (1989) Role of protein disulphide-isomerase in the expression of native proteins. Biochem Soc Symp 55:167-192

    CAS  PubMed  Google Scholar 

  • 27. Futter CE, Pearse A, Hewlett JL, Hopkins CR (1996) Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J Cell Biol 132:1011-1023

    Article  CAS  PubMed  Google Scholar 

  • 28. Gill DM, Dinius LL (1971) Observations of the structure of diphtheria toxin. J Biol Chem 246:1492-1495

    CAS  PubMed  Google Scholar 

  • 29. Gill DM, Pappenheimer AM Jr (1971) Structure-activity relationships in diphtheria toxin. J Biol Chem 246:1492-1495

    CAS  PubMed  Google Scholar 

  • 30. Goor RS, Pappenheimer AM Jr (1967) Studies on the mode of action of diphtheria toxin. 3. Site of toxin action in cell-free extracts. J Exp Med 126:899-912

    Article  CAS  PubMed  Google Scholar 

  • 31. Greenfield L, Bjorn MJ, Horn G, Fong D, Buck GA, Collier RJ, Kaplan DA (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by Corynebacterium diphtheriae. Proc Natl Acad Sci USA 80:6853-6857

    CAS  PubMed  Google Scholar 

  • 32. Gu F, Aniento F, Parton RG, Gruenberg J (1997) Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J Cell Biol 139:1183-1195

    Article  CAS  PubMed  Google Scholar 

  • 33. Hammond K, Caputo GA, London E (2002) Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior. Biochemistry 41:3243-3253

    Google Scholar 

  • 34. Hanover JA, Willingham MC, Pastan I (1984) Kinetics of transit of transferrin and epidermal growth factor through clathrin-coated membranes. Cell 39:283-293

    Article  CAS  PubMed  Google Scholar 

  • 35. Ho VT, Zahrieh D, Hochberg E, Micale E, Levin J, Reynolds C, Steckel S, Culter C, Fisher DC, Lee SJ, Alyea EP, Ritz J, Soiffer RJ, Antin JH (2004) Safety and efficacy of denileukin diftitox in patients with steroid refractory acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 104:1224-1226

    Article  CAS  PubMed  Google Scholar 

  • 36. Hopkins CR, Gibson A, Shipman M, Miller K (1990) Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346:335-339

    Article  CAS  PubMed  Google Scholar 

  • 37. Hu HY, Huynh PD, Murphy JR, vanderSpek JC (1998) The effects of helix breaking mutations in the diphtheria toxin transmembrane domain helix layers of the fusion toxin DAB389IL-2. Protein Eng 11:811-817

    Article  CAS  PubMed  Google Scholar 

  • 38. Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Mekada E (1994) Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which upregulates functional receptors and diphtheria toxin sensitivity. EMBO J 13:2322-2330

    CAS  PubMed  Google Scholar 

  • 39. Johnson VG, Nicholls PJ, Habig HW, Youle RJ (1993) The role of proline 345 in diphtheria toxin translocation. J Biol Chem 268:3514-3519

    CAS  PubMed  Google Scholar 

  • 40. Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL (1998) Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol 8:1399-1402

    Article  CAS  PubMed  Google Scholar 

  • 41. Kaczorek M, Delpeyroux F, Chenciner N, Streeck RE, Murphy JR, Boquet P, Tiollais P (1983) Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science 221:855-858

    CAS  PubMed  Google Scholar 

  • 42. Kagan BL, Finkelstein A, Colombini M (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc Natl Acad Sci USA 78:4950-4954

    CAS  PubMed  Google Scholar 

  • 43. Keen JH, Maxfield FR, Hardegree MC, Habig WH (1982) Receptor-mediated endocytosis of diphtheria toxin by cells in culture. Proc Natl Acad Sci USA 79:2912-2916

    CAS  PubMed  Google Scholar 

  • 44. Kim K, Groman NB (1965) In vitro inhibition of diphtheria toxin action by ammonium salts and amines. J Bacteriol 90:1552-1556

    CAS  PubMed  Google Scholar 

  • 45. Littleton JT, Barnard RJ, Titus SA, Slind J, Chapman ER, Ganetzky B (2001) SNARE-complex disassembly by NSF follows synaptic-vesicle fusion. Proc Natl Acad Sci USA 98:12233-12238

    Article  CAS  PubMed  Google Scholar 

  • 46. Luzio JP, Mullock BM, Pryor RP, Lindsay MR, James DE, Piper RC (2001) Relationship between endosomes and lysosomes. Biochem Soc Trans 29:476-480

    CAS  PubMed  Google Scholar 

  • 47. Madshus IH (1994a) The N-terminal alpha-helix of fragment B of diphtheria toxin promotes translocation of fragment A into the cytoplasm of eukaryotic cells. J Biol Chem 269:17723-17729

    CAS  PubMed  Google Scholar 

  • 48. Madshus IH, Wiedlocha A, Sandvig K (1994b) Intermediates in translocation of diphtheria toxin across the plasma membrane. J Biol Chem 269:4648-4652

    CAS  PubMed  Google Scholar 

  • 49. Mandel R, Ryser HJ, Ghani F, Wu M, Peak D (1993) Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Natl Acad Sci USA 90:4112-4116

    CAS  PubMed  Google Scholar 

  • 50. Mayer G, Boileau G, Bendayan M (2004) Sorting of furin in polarized epithelial and endothelial cells: expression beyond the Golgi apparatus. J Histochem Cytochem 52:567-580

    CAS  PubMed  Google Scholar 

  • 51. Merion M, Schlesinger P, Brooks RM, Moehring JM, Moehring TJ, Sly WS (1983) Defective acidification of endosomes in Chinese hamster ovary cell mutants ”cross-resistant” to toxins and viruses. Proc Natl Acad Sci USA 80:5315-5319

    CAS  PubMed  Google Scholar 

  • 52. Middlebrook JL, Dorland RB, Leppla SH (1978) Association of diphtheria toxin with Vero cells. Demonstration of a receptor. J Biol Chem 253:7325-7330

    CAS  PubMed  Google Scholar 

  • 53. Mindell JA, Silverman JA, Collier RJ, Finkelstein A (1992) Locating a residue in the diphtheria toxin channel. Biophys J 62:41-44

    CAS  PubMed  Google Scholar 

  • 54. Mindell JA, Silverman JA, Collier RJ, Finkelstein A (1994a) Structure-function relationships in diphtheria toxin channels: III. Residues which affect the cis pH dependence of channel conductance. J Membr Biol 137:45-57

    CAS  PubMed  Google Scholar 

  • 55. Mindell JA, Zhan H, Huynh PD, Collier RJ, Finkelstein A (1994b) Reaction of diphtheria toxin channels with sulfhydryl-specific reagents: observation of chemical reactions at the single molecule level. Proc Natl Acad Sci USA 91:5272-5276

    CAS  PubMed  Google Scholar 

  • 56. Mitamura T, Iwamoto R, Umata T, Yomo T, Urabe I, Tsuneoka M, Mekada E (1992) The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells. J Cell Biol 118:1389-1399

    Article  CAS  PubMed  Google Scholar 

  • 57. Moskaug JO, Sandvig K, Olsnes S (1988) Low pH-induced release of diphtheria toxin A-fragment in Vero cells. Biochemical evidence for transfer to the cytosol. J Biol Chem 263:2518-2525

    CAS  PubMed  Google Scholar 

  • 58. Moskaug JO, Stenmark H, Olsnes S (1991) Insertion of diphtheria toxin B-fragment into the plasma membrane at low pH. Characterization and topology of inserted regions. J Biol Chem 266:2652-2659

    CAS  PubMed  Google Scholar 

  • 59. Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P (1985) Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol 101:548-559

    Article  CAS  PubMed  Google Scholar 

  • 60. Murphy JR, Bishai W, Borowski M, Miyanohara A, Boyd J, Nagle S (1986) Genetic construction, expression, and melanoma-selective cytotoxicity of a diphtheria toxin-related alpha-melanocyte-stimulating hormone fusion protein. Proc Natl Acad Sci USA 83:8258-8262

    CAS  PubMed  Google Scholar 

  • 61. Naglich JG, Metherall JE, Russell DW, Eidels L (1992a) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69:1051-1061

    Article  CAS  PubMed  Google Scholar 

  • 62. Naglich JG, Rolf JM, Eidels L (1992b) Expression of functional diphtheria toxin receptors on highly toxin-sensitive mouse cells that specifically bind radioiodinated toxin. Proc Natl Acad Sci USA 89:2170-2174

    CAS  PubMed  Google Scholar 

  • 63. Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3:555-565

    Article  CAS  PubMed  Google Scholar 

  • 64. Oh KJ, Senzel L, Collier RJ, Finkelstein A (1999) Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc Natl Acad Sci USA 96:8467-8470

    Article  CAS  PubMed  Google Scholar 

  • 65. O’Keefe DO, Cabiaux V, Choe S, Eisenberg D, Collier RJ (1992) pH-dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349—-Lys. Proc Natl Acad Sci USA 89:6202-6206

    PubMed  Google Scholar 

  • 66. Pappenheimer AM Jr, Uchida T, Harper AA (1972) An immunological study of the diphtheria toxin molecule. Immunochemistry 9:891-906

    Article  CAS  PubMed  Google Scholar 

  • 67. Pappenheimer AM Jr (1977) Diphtheria toxin. Annu Rev Biochem 46:69-94

    Article  CAS  PubMed  Google Scholar 

  • 68. Papini E, Schiavo G, Sandona D, Rappuoli R, Montecucco C (1989) Histidine 21 is at the NAD+ binding site of diphtheria toxin. J Biol Chem 264:12385-12388

    CAS  PubMed  Google Scholar 

  • 69. Papini E, Schiavo G, Rappuoli R, Montecucco C (1990) Histidine-21 is involved in diphtheria toxin NAD+ binding. Toxicon 28:631-635

    Article  CAS  PubMed  Google Scholar 

  • 70. Papini E, Santucci A, Schiavo G, Domenighini M, Neri P, Rappuoli R, Montecucco C (1991) Tyrosine 65 is photolabeled by 8-azidoadenine and 8-azidoadenosine at the NAD+ binding site of diphtheria toxin. J Biol Chem 266:2494-2498

    CAS  PubMed  Google Scholar 

  • 71. Papini E, Cabrini G, Montecucco C (1993a) The sensitivity of cystic fibrosis cells to diphtheria toxin. Toxicon 31:359-362

    Article  CAS  PubMed  Google Scholar 

  • 72. Papini E, Rappuoli R, Murgia M, Montecucco C (1993b) Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J Biol Chem 268:1567-1574

    CAS  PubMed  Google Scholar 

  • 73. Ratts R, vanderSpek JC (2002) Diphtheria toxin: structure function and its clinical applications. In Chimeric Proteins: Mechanisms of action and therapeutic applications (Lorberboum-Galski H, Luzarovici P, eds) Taylor & Francis, London / New York pp. 14-36

    Google Scholar 

  • 74. Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139-1150

    Article  CAS  PubMed  Google Scholar 

  • 75. Rayhel EJ, Fields TJ, Albright W, Diamantstein T, Hughes JP (1988) Interleukin 2 and a lactogen regulate proliferation and protein phosphorylation in Nb2 cells. Biochem J 249:333-338

    CAS  PubMed  Google Scholar 

  • 76. Re GG, Waters C, Poisson L, Willingham MC, Sugamura K, Frankel AE (1996) Interleukin 2 (IL-2) receptor expression and sensitivity to diphtheria fusion toxin DAB389IL-2 in cultured hematopoietic cells. Cancer Res 56:2500-2595

    Google Scholar 

  • 77. Ren J, Sharpe JC, Collier RJ, London E (1999) Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin. Biochemistry 38:976-984

    Article  CAS  PubMed  Google Scholar 

  • 78. Richter D, Lipmann F (1970) Separation of mitochondrial and cytoplasmic peptide chain elongation factors from yeast. Biochemistry 9:5065-5070

    CAS  PubMed  Google Scholar 

  • 79. Rosen A, Lundman P, Carlsson M, Bhavani K, Srinivasa BR, Kjellstrom G, Nilsson K, Holmgren A (1995) A CD4+ T cell line-secreted factor, growth promoting for normal and leukemic B cells, identified as thioredoxin. Int Immunol 7:625-633

    CAS  PubMed  Google Scholar 

  • 80. Roux E, Yersin, A (1888) Contribution a l’etude de la diphtheriae. Ann Inst Pasteur 2:629-661

    Google Scholar 

  • 81. Rubartelli A, Sitia R (1991) Interleukin 1 beta and thioredoxin are secreted through a novel pathway of secretion. Biochem Soc Trans 19:255-259

    CAS  PubMed  Google Scholar 

  • 82. Ryser HJ, Mandel R, Ghani F (1991) Cell surface sulfhydryls are required for the cytotoxicity of diphtheria toxin but not of ricin in Chinese hamster ovary cells. J Biol Chem 266:18439-18442

    CAS  PubMed  Google Scholar 

  • 83. Sandvig K, Olsnes S (1980) Diphtheria toxin entry into cells is facilitated by low pH. J Cell Biol 87:828-832

    Article  CAS  PubMed  Google Scholar 

  • 84. Sandvig K, Olsnes S (1981b) Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule. J Biol Chem 256:9068-9076

    CAS  PubMed  Google Scholar 

  • 85. Sandvig K, Sundan A, Olsnes S (1985) Effect of potassium depletion of cells on their sensitivity to diphtheria toxin and pseudomonas toxin. J Cell Physiol 124:54-60

    CAS  PubMed  Google Scholar 

  • 86. Sandvig K, Olsnes S (1988) Diphtheria toxin-induced channels in Vero cells selective for monovalent cations. J Biol Chem 263:12352-12359

    CAS  PubMed  Google Scholar 

  • 87. Silverman JA, Mindell JA, Zhan H, Finkelstein A, Collier RJ (1994) Structure-function relationships in diphtheria toxin channels: I. Determining a minimal channel-forming domain. J Membr Biol 137:17-28

    CAS  PubMed  Google Scholar 

  • 88. Simpson LL, Coffield JA, Bakry N (1994) Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 269:256-262

    CAS  PubMed  Google Scholar 

  • 89. Smith WP (1980a) Cotranslational secretion of diphtheria toxin and alkaline phosphatase in vitro: involvement of membrane protein(s). J Bacteriol 141:1142-1147

    CAS  PubMed  Google Scholar 

  • 90. Smith WP, Tai PC, Murphy JR, Davis BD (1980) Precursor in cotranslational secretion of diphtheria toxin. J Bacteriol 141:184-189

    CAS  PubMed  Google Scholar 

  • 91. Stenmark H, McGill S, Olsnes S, Sandvig K (1989) Permeabilization of the plasma membrane by deletion mutants of diphtheria toxin. EMBO J 8:2849-2853

    CAS  PubMed  Google Scholar 

  • 92. Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura N, Sugamura K (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257:379-382

    CAS  PubMed  Google Scholar 

  • 93. Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3:246-255

    Article  CAS  PubMed  Google Scholar 

  • 94. Tsuneoka M, Nakayama K, Hatsuzawa K, Komada M, Kitamura N, Mekada E (1993) Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem 268:26461-26465

    CAS  PubMed  Google Scholar 

  • 95. Uchida T, Gill DM, Pappenheimer AM Jr, Greany R (1971) Mutation in the structural gene for diphtheria toxin carried by temperate phage b. Nature 233:8-11

    CAS  Google Scholar 

  • 96. Umata T, Moriyama Y, Futai M, Mekada E (1990) The cytotoxic action of diphtheria toxin and its degradation in intact Vero cells are inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase. J Biol Chem 265:21940-21945

    CAS  PubMed  Google Scholar 

  • 97. vanderSpek JC, Mindell JA, Finkelstein A, Murphy JR (1993) Structure/function analysis of the transmembrane domain of DAB389-interleukin-2, an interleukin-2 receptor-targeted fusion toxin. The amphipathic helical region of the transmembrane domain is essential for the efficient delivery of the catalytic domain to the cytosol of target cells. J Biol Chem 268:12077-12082

    CAS  PubMed  Google Scholar 

  • 98. vanderSpek J, Cassidy D, Genbauffe F, Huynh PD, Murphy JR (1994a) An intact transmembrane helix 9 is essential for the efficient delivery of the diphtheria toxin catalytic domain to the cytosol of target cells. J Biol Chem 269:21455-21459

    CAS  PubMed  Google Scholar 

  • 99. vanderSpek JC, Howland K, Friedman T, Murphy JR (1994b) Maintenance of the hydrophobic face of the diphtheria toxin amphipathic transmembrane helix 1 is essential for the efficient delivery of the catalytic domain to the cytosol of target cells. Protein Eng 7:985-989

    CAS  PubMed  Google Scholar 

  • 100. Waldmann TA (1989) Multichain interleukin2 receptor on malignant cells: A target for diagnosis and therapy. Cell Immunol 99:53-60

    Google Scholar 

  • 101. Wibo M, Poole B (1974) Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J Cell Biol 63:430-40

    Article  CAS  PubMed  Google Scholar 

  • 102. Wiedlocha A, Madshus IH, Mach H, Middaugh CR, Olsnes S (1992) Tight folding of acidic fibroblast growth factor prevents its translocation to the cytosol with diphtheria toxin as vector. EMBO J 11:4835-4842

    CAS  PubMed  Google Scholar 

  • 103. Williams DP, Parker K, Bacha P, Bishai W, Borowski M, Genbauffe F, Strom TB, Murphy JR (1987) Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng 1:493-498

    CAS  PubMed  Google Scholar 

  • 104. Williams DP, Snider CE, Strom TB, Murphy JR (1990a) Structure/function analysis of interleukin-2-toxin (DAB486-IL-2). Fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J Biol Chem 265:11885-11889

    CAS  PubMed  Google Scholar 

  • 105. Williams D P, Wen Z, Watson RS, Boyd J, Strom TB, Murphy JR (1990b) Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J Biol Chem 265:20673-20677

    CAS  PubMed  Google Scholar 

  • 106. Woolfson DN, Mortishire-Smith RJ, Williams DH (1991) Conserved positioning of proline residues in membrane-spanning helices of ion-channel proteins. Biochem Biophys Res Commun 175:733-737

    CAS  PubMed  Google Scholar 

  • 107. Xu Z, Mayer A, Muller E, Wickner W (1997) A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J Cell Biol 136:299-306

    Article  CAS  PubMed  Google Scholar 

  • 108. Xu Z, Sato K, Wickner W (1998) LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93:1125-1134

    Article  CAS  PubMed  Google Scholar 

  • 109. Zeng H (1998) Translocation of catalytic domain of a diphtheria toxin fusion protein from purified early endosomes. Doctoral Dissertation, Boston University School of Medicine, Boston, MA

    Google Scholar 

  • 110. Zerial M, Stenmark H (1993) Rab GTPases in vesicular transport. Curr Opin Cell Biol 5:613-620

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manfred J. Schmitt Raffael Schaffrath

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Ratts, R., Murphy, J.R. Diphtheria toxin, diphtheria-related fusion protein toxins, and the molecular mechanism of their action against eukaryotic cells. In: Schmitt, M.J., Schaffrath, R. (eds) Microbial Protein Toxins. Topics in Current Genetics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b102267

Download citation

Publish with us

Policies and ethics