Non-linear curve-fitting methods for data from the XL-A analytical utltracentrifuge

  • E. K. Dimitriadis
  • M. S. Lewis
Data Analysis

DOI: 10.1007/BFb0118011

Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 107)
Cite this paper as:
Dimitriadis E.K., Lewis M.S. (1997) Non-linear curve-fitting methods for data from the XL-A analytical utltracentrifuge. In: Jaenicke R., Durchschlag H. (eds) Analytical Ultracentrifugation IV. Progress in Colloid & Polymer Science, vol 107. Steinkopff

Abstract

In equilibrium or velocity sedimentation experiments with the XL-A analytical ultracentrifuge it is customary to acquire absorbance data. The least-squares method is most widely used for fitting non-linear models to such collected data. It is here shown that due to the non-Gaussian characteristics of the noise in the absorbance data, the least-squares method is not optimal and introduces a systematic bias to the estimated parameters. This bias can be eliminated by either using the maximum-likelihood method on the absorbance data or otherwise by fitting the intensity data directly. The probability distribution of the noise in the latter is Gaussian and the least-squares estimation is equivalent to maximum likelihood. The methodology for using the intensity data is developed and simulations for a variety of systems are performed.

Key words

Ultracentrifugation Gaussian noise curve-fitting least-squares estimation maximum-likelihood estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1997

Authors and Affiliations

  • E. K. Dimitriadis
    • 1
  • M. S. Lewis
    • 1
  1. 1.Biomedical Engineering and Instrumentation Program NCRR/NIHBethesdaUSA

Personalised recommendations