Skip to main content

Quantum wires as Luttinger liquids: experiment

  • Correlations and Disorder
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Part of the book series: Advances in Solid State Physics ((ASSP,volume 40))

  • 120 Accesses

Abstract

The low-temperature ballistic transport properties of quantum wires prepared by the cleaved edge overgrowth method in the GaAs/AlGaAs material system are presented. As the Fermi energy in these one-dimensional (1D) systems is varied by application of a gate voltage a series of quantized conductance plateaus is observed. The plateau values significantly deviate from integer multiples of 2·e 2 /h and show a power law increase with increasing temperature as predicted by Luttinger liquid (LL) theory. The characteristic power law scaling exponent is obtained as a function of the Fermi energy and the number of occupied 1D subbands. From nonlinear current-voltage characteristics across the quantum wires independent LL power law scaling exponents can be deduced. The latter are found to be consistent with those obtained from temperature dependent measurements. In order to rule out contact effects as the only origin of the observed deviations we have investigated a series of quantum wires of different lengths and find quenching of the Luttinger liquid behavior as the wire length is increased. This observation is in agreement with a detailed analysis of reproducable conductance fluctuations which are superimposed on the conductance plateaus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. S. Tarucha, T. Honda, and T. Saku, Solid State Comm. 94, 413 (1995).

    Article  ADS  Google Scholar 

  2. R. Held, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, Appl. Phys. Lett. 75, 1134 (1999).

    Article  ADS  Google Scholar 

  3. L. Pfeiffer, K. W. West, H. L. Störmer, J. P. Eisenstein, K. W. Baldwin, D. Gershoni, and J. Spector, Appl. Phys. Lett. 56, 1697 (1990).

    Article  ADS  Google Scholar 

  4. W. Wegscheider, W. Kang, L. N. Pfeiffer, K. W. West, H. L. Stormer, und K. W. Baldwin, Solid-State Electron. 37, 547 (1994).

    Article  ADS  Google Scholar 

  5. A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).

    Article  ADS  Google Scholar 

  6. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  ADS  Google Scholar 

  7. W. Apel and T. M. Rice, Phys. Rev. B 26, 7063 (1982).

    Article  ADS  Google Scholar 

  8. C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992); C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).

    Article  ADS  Google Scholar 

  9. D. Yue, L. I. Glazman, and K. A. Matveev, Phys. Rev. B 49, 1966 (1994).

    Article  ADS  Google Scholar 

  10. Y. Oreg and A. M. Finkel'stein, Phys Rev. B 54, R14265 (1996).

    Article  ADS  Google Scholar 

  11. O. M. Auslaender, A. Yacobi, R. de Picciotto, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 84, 1764 (2000).

    Article  ADS  Google Scholar 

  12. C. W. J. Beenakker an H. van Houten, in Solid State Physics, Semiconductor Heterostructures and Nanostructures, edited by H. Ehrenreich and D. Turnbull (Academic Press, New York, 1991).

    Google Scholar 

  13. D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995); I. Safi and H. J. Schulz, Phys. Rev. B 52, R17040 (1995).

    Article  ADS  Google Scholar 

  14. D. L. Maslov, Phys Rev. B 52, R14368 (1995).

    Article  ADS  Google Scholar 

  15. K. A. Matveev and L. I. Glazman, Physica B 189, 266 (1993).

    Article  ADS  Google Scholar 

  16. A. Kawabata and T. Brandes, J. Phys. Soc. Jpn. 65, 3712 (1996); N. P. Sandler and D. L. Maslov, Phys. Rev. B 55, 13808 (1997).

    Article  ADS  Google Scholar 

  17. M. Steiner and W. Häusler, Solid State Commun. 104, 799 (1997).

    Article  ADS  Google Scholar 

  18. R. Egger and H. Grabert, Phys Rev. B 58, 10761 (1998).

    Article  ADS  Google Scholar 

  19. A. Y. Alekseev and V. V. Cheianov, Phys Rev. B 57, R6834 (1998).

    Article  ADS  Google Scholar 

  20. S. R. Renn, D. P. Arovas, Phys. Rev. Lett. 78, 4091 (1997).

    Article  ADS  Google Scholar 

  21. R. de Picciotto, H. L. Stormer, A. Yacoby, K. W. Baldwin, L. N. Pfeiffer and K. W. West, in Proceedings of the 13 th International Conference on the Electronic Properties of Two-dimensional Systems, to appear in Physica E.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Wegscheider, W., Rother, M., Ertl, F., Deutschmann, R.A., Bichler, M., Abstreiter, G. (2000). Quantum wires as Luttinger liquids: experiment. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108348

Download citation

  • DOI: https://doi.org/10.1007/BFb0108348

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics