Skip to main content

Classical mixture models for polythermal ice

  • Ice Physics
  • Conference paper
  • First Online:
Book cover Advances in Cold-Region Thermal Engineering and Sciences

Part of the book series: Lecture Notes in Physics ((LNP,volume 533))

  • 171 Accesses

Abstract

In this work, cold ice is treated as a heat conducting, viscous fluid, and temperate ice as a saturated mixture of a nearly density preserving, viscous heat conducting fluid (ice) and a nearly incompressible, ideal heat-conducting fluid (water) which exchange mass via phase change. Cold and temperate ice are separated by a singular surface, i.e., the cold-temperate transition surface (CTS), across which Stefan-type energy transfer occurs.

With the help of a general thermodynamic theory for binary mixtures, we derive an approximate formulation for polythermal ice accurate to linear orders in the volume fraction of the water. We show that the standard polythermal ice models are straightforward reductions of this formulation and we derive explicit expressions for the volumetric and surfacial melting rates using approximate energy balances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greve, R. (1997) A continuum-mechanical formulation for shallow polythermal ice sheets. Philosophical transactions of the Royal Society London A355, 921–974.

    ADS  MATH  Google Scholar 

  2. Greve, R., Weis, M. & Hutter, K. (1998) Paleoclimatic evolution and present conditions of the Greenland Ice Sheet in the vicinity of Summit: an approach by large-scale modelling. Paleoclimates 2, 133–161.

    Google Scholar 

  3. Svendsen, B. & Hutter, K. (1995) On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Engng. Sci. 33, 2021–2054

    Article  MATH  MathSciNet  Google Scholar 

  4. Hutter, K., Lalovi, L. & Vulliet, L. (1998) Thermodynamically based mixture models of saturated and unsaturated soils. Mechanics of Frictional Material 3, 1–44

    Article  Google Scholar 

  5. Blatter, H. (1991) Effect of climate on the cryosphere. Zürcher Geogr. Schr. 41, 98pp

    Google Scholar 

  6. Blatter, H. & Hutter, K. (1991) Polythermal conditions in arctic glaciers. Journal of Glaciology 37, 261–269

    ADS  Google Scholar 

  7. Fowler, A. C. (1984) On the transport of moisture in polythermal glaciers. Geophys. Astrophys. Fluid Dynamics 28, 99–140

    Article  ADS  MATH  Google Scholar 

  8. Fowler, A. C. & Larson, D. A. (1978) On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc. R. Soc. Lond. A363, 217–242

    Article  ADS  MathSciNet  Google Scholar 

  9. Funk, M., Echelmeyer, K. & Iken, A. (1994) Mechanisms of fast flow in Jacobshavns Isbrae, West Greenland: Part II. Modeling of englacial temperatures. Journal of Glaciology 40(136), 569–585.

    ADS  Google Scholar 

  10. Hutter, K. (1982) A mathematical model of polythermal glaciers and ice sheets. J. Geophys. Astrophys. Fluid Dyn. 21, 201–224

    Article  ADS  MATH  Google Scholar 

  11. Hutter, K. (1983) Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. D. Reidel Publishing Company, Dordrecht, Holland, 510pp.

    Google Scholar 

  12. Hutter, K. (1993) Thermo-mechanically coupled ice sheet response. Cold, polythermal, temperate. J. Glaciol. 39(131), 65–86

    ADS  Google Scholar 

  13. Hutter, K. & Engelhardt, H. (1988) The use of continuum thermodynamics in the formulation of ice sheet dynamics. Ann. Glaciol. 11, 46–51

    ADS  Google Scholar 

  14. Hutter, K., Blatter, H. & Funk, M. (1988) A model computation of moisture content in polythermal glaciers. Journal of Geophysical Research 93(B10), 12205–12214.

    Article  ADS  Google Scholar 

  15. Paterson, W. S. B. (1981) The physics of Glaciers. Pergamon Press.

    Google Scholar 

  16. Truesdell, C. (1984) Rational Thermodynamics. Springer-Verlag

    Google Scholar 

  17. Svendsen, B & Gray, J.N.T.M. (1996) On balance relations for a classical mixture containing a moving, non-material surface, Cont. Mech. Thermodyn. 8, 171–187.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kolumban Hutter Yongqi Wang Hans Beer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Hutter, K., Svendsen, B. (1999). Classical mixture models for polythermal ice. In: Hutter, K., Wang, Y., Beer, H. (eds) Advances in Cold-Region Thermal Engineering and Sciences. Lecture Notes in Physics, vol 533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104183

Download citation

  • DOI: https://doi.org/10.1007/BFb0104183

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66333-1

  • Online ISBN: 978-3-540-48410-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics