Skip to main content

Some observations on the historical development of conduction heat transfer

  • Conference paper
  • First Online:
Advances in Cold-Region Thermal Engineering and Sciences

Part of the book series: Lecture Notes in Physics ((LNP,volume 533))

Abstract

An attempt is made to obtain historical perspectives on the development of the mathematical theory of heat conduction considering Newton’s law of cooling (1701) and its close connection with Fourier’s work from 1807 to 1822 resulting in his epoch-making treatise on “The Analytical Theory of Heat”. Fourier was the principal architect of the heat conduction theory. Fourier’s work established a new methodology for the formulation and solution of physical problems, based on partial differential equations and marked a major turning point in the history of physics. The developments in the periods 1822 to 1900 and 1900 to 1950 are also briefly reviewed as are the classical (analytical) and numerical methods of solution for heat conduction problems. The analogy in heat, momentum, and mass transfer for transport phenomena is discussed. A list of recent conduction heat transfer books is presented to show the scope of recent developments. Some observations on conduction heat transfer are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brush, S. G. (1976) The Kind of Motion We Call Heat, A History of the Kinetic Theory of Gases in the 19th Century, Books 1 and 2, North Holland Pub. Co., Amsterdam

    Google Scholar 

  2. Brush, S. G. (1988) Gaseous Heat Conduction and Radiation in 19th Century Physics, in: History of heat Transfer, eds. E. T. Layton and J. H. Lienhard, ASME, New York, 25–51

    Google Scholar 

  3. Schlünder, E. U. (1982) Wilhelm Nusselt’s Opinion on Heat Transfer by Convection, Chemical Engineering Fundamentals, 1 / No. 2, 4

    Google Scholar 

  4. Ruffner, J. A. (1963) Reinterpretation of the Genesis of Newton’s Law of Cooling, Archive for History of Exact Sciences, 2, 138–153

    Article  MathSciNet  Google Scholar 

  5. Grigull, U. (1984) Newton’s Temperature Scale and the Law of Cooling, Wärme-und Stoffübertragung, 18, 195–199

    Article  ADS  Google Scholar 

  6. Cheng, K. C., Fujii, T. (1998) Isaac Newton and Heat Transfer, Heat Transfer Engineering, 19, 9–21

    Article  MATH  ADS  Google Scholar 

  7. Newton, I. (1701) A Scale of the Degrees of Heat, in: Magie, W. F. (1935) A Source Book in Physics, McGraw-Hill, New York, 125–128

    Google Scholar 

  8. Newton, I. (1701) A Scale of the Degrees of Heat, in: Cohen, I. B. (1978) Isaac Newton’s Papers & Letters on Natural Philosophy and Related Documents, 2nd edition, Harvard Univ. Press, Cambridge, 265–268

    Google Scholar 

  9. Cardwell, D. S. L. (1989) From Watt to Clausius, The Rise of Thermodynamics in the Early Industrial Age, Iowa State University, Ames

    Google Scholar 

  10. Fourier, J. (1822) The Analytical Theory of Heat, translated, with notes, by A. Freeman, Dover Publications (1955), New York

    Google Scholar 

  11. Soumerai, H. (1987) Practical Thermodynamic Tools for Heat Exchanger Design Engineers, John Wiley & Sons, New York

    Google Scholar 

  12. Herivel, J. (1975) Joseph Fourier, Clarendon Press, Oxford

    Google Scholar 

  13. Grattan-Guinness, I. (1972) Joseph Fourier 1768–1830, The MIT Press, Cambridge

    MATH  Google Scholar 

  14. Grattan-Guinness I. (1969) Joseph Fourier and the Revolution in Mathematical Physics, J. Inst. Maths Applics., 5, 230–253

    Article  MATH  MathSciNet  Google Scholar 

  15. Grattan-Guinness I. (1970) The Development of the Foundations of Mathematical Analysis from Euler to Riemann, Massachusetts Institute of Technology

    Google Scholar 

  16. Mach, E. (1986) Principles of the Theory of Heat, Historically and Critically Elucidated, D. Reidel Pub. Co., Boston; Die Principien der Wärmelehre (1st edition, 1886)

    Google Scholar 

  17. Truesdell, C. (1980) The Tragicomical History of Thermodynamics, 1822–1854, Springer-Verlag, New York

    MATH  Google Scholar 

  18. Biot, J. B. (1804) The Propagation of Heat and a New Way of Measuring High Temperatures Simply and Exactly, Journal des Mines, 17, 203–244

    Google Scholar 

  19. Sneddon, I. N. (1951) Fourier Transforms, McGraw-Hill, New York, p. 167

    Google Scholar 

  20. Herivel, J. W. (1966) Aspects of French Theoretical Physics in the Nineteenth Century, The British J. for the History of Science, 3, 109–132

    Article  Google Scholar 

  21. Whewell, W. (1836) Report on the Recent Progress and Present Condition of the Mathematical Theories of Electricity, Magnetism, and Heat, Report of the British Association for the Advancement of Science, John Murray, London, 1–34

    Google Scholar 

  22. Arago, F., (1833) Joseph Fourier, Biographies of Distinguished Scientific Men, Longman, Brown, Green, Longmans & Roberts: 242–286

    Google Scholar 

  23. Ravetz, J., Grattan-Guinness, I. (1972) Joseph Fourier, Dictionary of Scientific Biography, 5: 93–99

    Google Scholar 

  24. Friedman, R. M. (1978) The Creation of a New Science: Joseph Fourier’s Analytical Theory of Heat, Historical Studies in the Physical Sciences 4, 73–99

    Google Scholar 

  25. Truesdell, C. (1984) Rational Thermodynamics, 2nd Edition, Springer-Verlag, New York

    MATH  Google Scholar 

  26. Merz, J. T. (1907) A History of European Thought in the Nineteenth Century, Vols. 1 and 2, William Blackwood and Sons, Edinburgh

    Google Scholar 

  27. Carslaw, H. S. (1921) Introduction to the Theory of Fourier’s Series and Integrals, Macmillan and Co., London

    MATH  Google Scholar 

  28. Burr, A. C. (1933) Notes on the History of the Concept of Thermal Conductivity, ISIS, 20, 246–259

    Article  Google Scholar 

  29. Burr, A. C. (1934) Notes on the History of the Experimental Determination of the Thermal Conductivity of Gases, ISIS, 21, 169–186

    Article  Google Scholar 

  30. Ingersoll, L. R., Zobel, O. J., Ingersoll, A. C. (1948) Heat Conduction, with Engineering and Geological Applications, McGraw-Hill, New York

    Google Scholar 

  31. Carslaw, H. S., Jaeger, J. C. (1947, 1959) Conduction of Heat in Solids, Clarendon Press, London

    MATH  Google Scholar 

  32. Jakob, M., (1949) Heat Transfer, Vol. 1, John Wiley & Sons, New York

    Google Scholar 

  33. Dalby, W. E. (1909) Heat Transmission, Proc. Inst. of Mechanical Engrs., 921–986

    Google Scholar 

  34. Glazebrook, R. (ed.), (1922) A Dictionary of Applied Physics, Vol. 1, Macmillan and Co., 429–470

    Google Scholar 

  35. Jakob, M. (1926) Wärmeleitung, in: Müller-Pouillets, Lehrbuch der Physik, II. Auflage, Druck und Verlag von Friedr. Vieweg & Sohn, Braunschweig, 871–937

    Google Scholar 

  36. Knoblauch, O. (1929) Wärmeleitung, Handbuch der Experimental Physik, Band 9, Akademische Verlagsgesellschaft M.B.H., Leipzig, 191–267

    Google Scholar 

  37. Gröber, H. (1921) Die Grundgesetze der Wärmeleitung und des Wärmeüberganges, Verlag von Julius Springer, Berlin

    Google Scholar 

  38. ten Bosch, M. (1921) Die Wärmeübertragung, Verlag von Julius Springer, Berlin

    Google Scholar 

  39. Merkel, F. (1927) Die Grundlagen der Wärmeübertragung, Verlag von Theodor Steinkopff, Dresden

    Google Scholar 

  40. Schack, A. (1929) Der industrielle Wärmeübergang, Verlag Stahleisen m.b.H., Düsseldorf

    Google Scholar 

  41. Lienhard, J. (1979) Observations on the German Origins of American Heat Transfer Pedagogy, Heat Transfer Engineering, 1, 7 and 64

    Google Scholar 

  42. Carslaw, H. S. (1906) Fourier’s Series and Integrals and the Mathematical Theory of Heat Conduction, Macmillian, New York

    MATH  Google Scholar 

  43. Carslaw, H. S. (1921) Mathematical Theory of Heat, Macmillan, New York; (1930) Fourier Series and Integrals, Macmillan, New York

    Google Scholar 

  44. Carslaw, H. S., Jaeger, J. C. (1941) Operational Methods in Applied Mathematics, Dover Publications, New York

    MATH  Google Scholar 

  45. McAdams, W. H. (1954) Heat Transmissions, McGraw-Hill, New York

    Google Scholar 

  46. Kodaira, Y. (1933) Physical Mathematics, Vols. 1 and 2, Iwanami-Shoten, Tokyo (in Japanese)

    Google Scholar 

  47. Kawashimo, K. (1941, 1971) Heat Conduction Theory 2nd ed., Ohmshia, Tokyo (in Japanese)

    Google Scholar 

  48. Katto, Y. (1956) Heat Conduction Theory, Kyoritsu Publications, Tokyo (in Japanese)

    Google Scholar 

  49. Warburg, E. (1924) Über Wärmeleitung und andere ausgleichende Vorgäenge, Julius Springer, Berlin

    Google Scholar 

  50. Hobson, E. W. (1903–1921) Wärmeleitung, Mathematischer Teil, in: Encyklopaedie der mathematischen Wissenschaften, 5, (1), Article 4, I, B.G. Teubner, Leipzig and Berlin

    Google Scholar 

  51. Bachmann, H. (1938) Tafeln über Abkühlungsvorgänge einfacher Körper, Julius Springer, Berlin

    Google Scholar 

  52. Bird, R. B., Stewart, W. E., Lightfoot, E. N. (1960) Transport Phenomena, Wiley, New York

    Google Scholar 

  53. Rohsenow, W. M., Choi, H. (1961) Heat, Mass, and Momentum Transfer, Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  54. Cheng, K. C., Chen, C. K. (1992) Some Observations on the Relationship of Transient Heat Conduction to Convective Laminar Heat Transfer, General Papers, HTD-Vol. 212, ASME, 19–29

    Google Scholar 

  55. Graetz, L. (1883) Über die Wärmeleitungsfähigkeit von Flüssigkeiten, Ann. Phys., 18, 79–94

    Google Scholar 

  56. Schlünder, E.U. (1972) Über die Brauchbarkeit des Newtonschen Abkühlungsgesetzes im Lichte der Fourierschen Wärmeleitungstheorie, Wärme-und Stoffübertragung, 5, 9–14

    Article  ADS  Google Scholar 

  57. Cheng, K.C., Seki, N., eds. (1991) Freezing and Melting Heat Transfer in Engineering, Hemisphere, New York

    Google Scholar 

  58. Powell, R.W., Touloukian, Y.S. (1973) Thermal Conductivities of the Elements, Science, 181, 999–1008

    Google Scholar 

  59. Brush, S.G. (1976) Irreversibility and Indeterminism: Fourier to Heisenberg, Journal of the History of Ideas, 37, 603–630

    Article  Google Scholar 

  60. SAE Aircraft Icing Technology Subcommittee, (1987) Icing Technology Bibliography, Society of Automotive Engineers, Inc., Warrendale, PA

    Google Scholar 

  61. Tutton, A. E. H. (1927) The High Alps, A Natural History of Ice and Snow, Kegan Paul, Trench, Trubner & Co., London

    Google Scholar 

  62. Kotake, S. (1990) Molecular Thermo-Fluid Dynamics, Maruzen, Tokyo (in Japanese)

    Google Scholar 

  63. Joseph, D. D., Preziosi, L. (1989) Heat Waves, Rev. Mod. Phys., 61, 41–73

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kolumban Hutter Yongqi Wang Hans Beer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Cheng, K.C. (1999). Some observations on the historical development of conduction heat transfer. In: Hutter, K., Wang, Y., Beer, H. (eds) Advances in Cold-Region Thermal Engineering and Sciences. Lecture Notes in Physics, vol 533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104167

Download citation

  • DOI: https://doi.org/10.1007/BFb0104167

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66333-1

  • Online ISBN: 978-3-540-48410-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics