Skip to main content

Ore localization in the first Weyl algebra

  • Conference paper
  • First Online:
  • 642 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1448))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Block, The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra, Advances in Math. 39 (1981), 69–110.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209–242.

    MathSciNet  MATH  Google Scholar 

  3. J.S. Golan, Localization of Noncommutative Rings, Marcel Dekker Inc. (1975).

    Google Scholar 

  4. K.R. Goodearl, Linked injectives and Ore localizations, J. London Math. Soc. 37 (1988), 404–420.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.C. McConnell and J.C. Robson, Homomorphisms and extensions of modules over certain differential polynomial rings, J. Algebra 26 (1973), 319–342.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.C. McConnell and J.C. Robson, Noncommutative Noetherian rings, John Wiley and Sons (1987).

    Google Scholar 

  7. B. Stenström, Rings of quotients, Springer (1975).

    Google Scholar 

  8. Y.L. Zhang, Ore localizations and irreducible representations of the first Weyl algebra, Ph.D. thesis, McMaster University (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Surender Kumar Jain Sergio R. López-Permouth

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Müller, B.J., Zhang, YL. (1990). Ore localization in the first Weyl algebra. In: Jain, S.K., López-Permouth, S.R. (eds) Non-Commutative Ring Theory. Lecture Notes in Mathematics, vol 1448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091259

Download citation

  • DOI: https://doi.org/10.1007/BFb0091259

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53164-7

  • Online ISBN: 978-3-540-46745-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics