Skip to main content

Bilateral algorithms and their applications

  • Lectures
  • Conference paper
  • First Online:
Book cover Computational Mechanics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 461))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ginsberg. Bilateral Algorithms for Certain Classes of Ordinary Differential Equations, Doctoral Dissertation, Univ. of Iowa, Iowa City, Iowa (1972).

    Google Scholar 

  2. H. Weyl, Concerning the differential equations of some boundary layer problems, Proc. Nat. Acad. Sci. U. S. A. 27, 578 (1941); 28, 100 (1942).

    Article  MathSciNet  MATH  Google Scholar 

  3. W. F. Ames, Nonlinear Ordinary Differential Equations in Transport Processes, Academic Press, New York, 121–127, 161–165 (1968).

    MATH  Google Scholar 

  4. A. V. Baranov, New method for solving differential equations of the type \(F_n \tfrac{d}{{dx}}F_{n - 1} (x)\tfrac{d}{{dx}} \cdot \cdot \cdot F_1 (x)\tfrac{{dy}}{{dx}} - y(x) = F(x)\), Zh. Vych. Math., 4, 920 (1964).

    MathSciNet  Google Scholar 

  5. C. Fabry, Nested Bounds for Solutions of Differential Equations, SACLANTCEN Technical Memorandum No. 155 (unclassified), SACLANT ASW Research Center, La Spezia, Italy (1970).

    Google Scholar 

  6. B. A. Boley, Upper and lower bounds for the solution of a melting problem, Quart. Appl. Math., 21, 1 (1963).

    MathSciNet  MATH  Google Scholar 

  7. F. C. Appl., and H. M. Hung, A principle for convergent upper and lower bounds, Int. J. Mech. Sci., 6, 381 (1964).

    Article  Google Scholar 

  8. Y. G. Ispolov, and F. C. Appl, Bounds for limit cycles of self-sustained vibrations, J. Sound Vib. 15, 163 (1971).

    Article  MATH  Google Scholar 

  9. W. Kahan, A computable error bound for systems of ordinary differential equations, presentation at SIAM Fall Meeting, Iowa City, Iowa, 1966, abstract in SIAM Rev., 8, 568 (1966).

    Google Scholar 

  10. W. Kahan, Ellipsoidal bounds for the propagation of uncertainty along trajectories, presentation at Conference on the Numerical Solution of Ordinary Differential Equations, University of Texas, Austin, October 20 (1972).

    Google Scholar 

  11. A. Weinstein, and W. Stenger, Methods of Intermediate Problems for Eigenvalues, Academic Press, New York (1972).

    MATH  Google Scholar 

  12. W. R. Mann, and F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math., 9, 163 (1951).

    MathSciNet  MATH  Google Scholar 

  13. J. H. Roberts, and W. R. Mann, A certain nonlinear integral equation of the Volterra type, Pac. J. Math., 1, 431 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Padmavally, On a nonlinear integral equation, J. Math. Mech. 7, 533 (1958)

    MathSciNet  MATH  Google Scholar 

  15. A. Friedman, Generalized heat transfer between solids and gases under nonlinear boundary conditions, J. Math. Mech. 8, 161 (1959).

    MathSciNet  MATH  Google Scholar 

  16. N. Levinson, A nonlinear Volterra equation arising in the theory of superfluidity, J. Math. Anal. Appl. 1, 1 (1960).

    Article  MATH  Google Scholar 

  17. J. B. Keller, and W. E. Olmstead, Temperature of a nonlinearly radiating semiinfinite solid, Quart. Appl. Math. 29, 559 (1972).

    MathSciNet  MATH  Google Scholar 

  18. S. A. Chaplygin, A new method for the approximate integration of differential equations, Tr. TSAGI, No. 130 (1932).

    Google Scholar 

  19. S. A. Chaplygin, Approximate integration of a system of two differential equations, from his Collected Works, 2, Gostekhidzat (1948).

    Google Scholar 

  20. N. V. Azbelev, On an approximate solution of ordinary differential equations based upon S. A. Chaplygin’s method, Doklady Akad. (Nauk) SSSR (N.S.), 83, 517 (1952)

    MathSciNet  Google Scholar 

  21. B. N. Babkin, On a modification of a method of S. A. Chaplygin for approximate integration, Doklady Akad, Nau, SSSR (N.S.), 67, 213 (1949).

    MathSciNet  MATH  Google Scholar 

  22. B. N. Babkin, Approximate integration of systems of ordinary differential equations of the first order by the method of S. A. Chaplygin, Izv. Akad. Nauk SSSR Ser. Mat., 18, 477 (1954).

    MathSciNet  MATH  Google Scholar 

  23. G. V. Gendzhoyan, On two-sided Chaplygin approximations to the solution of the two-point boundary problem, Private translation from Izv. SSR Fiz. Mate Nauk, 17, No. 3, 21 (1964).

    MathSciNet  Google Scholar 

  24. R. E. Moore, Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of ordinary differential equations, in Error in Digital Computation, edited by L. B. Rall, John Wiley and Sons, New York, Vol. 2, 103 (1965).

    Google Scholar 

  25. R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, N. J., (1966).

    MATH  Google Scholar 

  26. J. Braun, and R. E. Moore, A Program for the Solution of Differential Equations Using Interval Arithmetic (DIFEQ), MRC Technical Summary Report No. 901, Mathematics Research Center, Univ. of Wisconsin, Madison, June (1968).

    Google Scholar 

  27. F. Krückeberg, Ordinary differential equations, Chapter 8 in Topics in Interval Analysis edited by E. Hansen, Oxford University Press, London, 91 (1969).

    Google Scholar 

  28. A. Reiter, Interval Arithmetic Package, MRC Program #2, Mathematics Research Center, Univ. of Wisconsin, Madison (1965).

    Google Scholar 

  29. K. G. Guderley, and C. L. Keller, Ellipsoidal Bounds for the Solutions of Systems of Ordinary Linear Differential Equations, ARL Technical Report, Aerospace Research Laboratories, Wright Patterson Air Force Base, Ohio, January (1969).

    Google Scholar 

  30. K. G. Guderley, and C. L. Keller, A basic theorem in the computation of ellipsoidal error bounds, Numer. Math., 19, No.3, 218 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Bulirsch, and J. Stoer, Asymptotic upper and lower bounds for results of extrapolation methods, Numer. Math., 8, 93 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. D. Gorbunov, and Y. A. Shakhov, On the approximate solution of Cauchy’s problem for ordinary differential equations to a given number of correct figures, Parts I and II, USSR Computation Mathematics and Mathematical Physics, 3, No. 2, 316 (1963) and 4, No. 2, 37 (1964).

    Article  MATH  Google Scholar 

  33. L. Collatz, Application of functional analysis to error estimation, in Error in Digital Computation edited by L. B. Rall, John Wiley and Sons, Vol. 2, 253 (1965).

    Google Scholar 

  34. L. Collatz, Functional Analysis and Numerical Mathematics, Academic Press, New York, 350–357 (1966).

    Book  Google Scholar 

  35. A. Tal, On monotone decomposable operators, J. Assoc. Comput. Mach., 16, No. 3, 507 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Berman, and R. J. Plemmons, A direct iterative method for best least squares approximate solutions to linear systems, presentation at SIAM-SIGNUM 1972 Fall Meeting, Austin, Texas, October (1972).

    Google Scholar 

  37. T. V. Davies, and E. M. James, Nonlinear Differential Equations, Addison-Wesley, Reading, Mass., 1 (1966).

    MATH  Google Scholar 

  38. L. B. Rall, Computational Solution of Nonlinear Operator Equations, John Wiley and Sons, New York, 58 (1969).

    MATH  Google Scholar 

  39. W. F. Ames, Nonlinear Partial Differential Equations in Engineering, Vol. II, Ch. 2, Academic Press, New York (1972).

    MATH  Google Scholar 

  40. R. K. Miller, Nonlinear Volterra Equations, W. A. Benjamin, Menlo Park, Calif. (1971).

    MATH  Google Scholar 

  41. W. Walter, Differential and Integral Inequalities, Springer Verlag, New York (1970).

    Book  Google Scholar 

  42. T. L. Saaty, Modern Nonlinear Equations, McGraw Hill, New York (1967).

    MATH  Google Scholar 

  43. L. Collatz, Application of the theory of monotonic operators to boundary value problems, in Boundary Problems in Differential Equations, Univ. of Wisconsin Press, Madison, Wisconsin, 35 (1960).

    Google Scholar 

  44. A. N. Willson, Jr., On the solution of equations for nonlinear resistive networks, Bell System Tech. J., 47, 1755 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  45. N. A. Strakhov, and L. Kurz, An upper bound on the zero crossing distribution, Bell System Tech. J., 47, 529 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  46. F. B. Hildebrand, Methods of Applied Mathematics, Prentice-Hall, Englewood Cliffs, N. J., p. 383 (1952).

    MATH  Google Scholar 

  47. D. H. Hyers, Integral equations for nonlinear problems in partial differential equations, in Nonlinear Partial Differential Equations (W.F. Ames, ed.), Academic Press, New York, p. 125, 1967.

    Chapter  Google Scholar 

Download references

Authors

Editor information

J. Tinsley Oden

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag

About this paper

Cite this paper

Ames, W.F., Ginsberg, M. (1975). Bilateral algorithms and their applications. In: Oden, J.T. (eds) Computational Mechanics. Lecture Notes in Mathematics, vol 461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0074146

Download citation

  • DOI: https://doi.org/10.1007/BFb0074146

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07169-3

  • Online ISBN: 978-3-540-37503-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics