Skip to main content

A random product of markovian semi-groups of operators

  • Conference paper
  • First Online:
  • 373 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 451))

Abstract

Let Y(t) be a continuous time pure jump process with state space S = {1,2,...,n} and let ξ01,..., be the succession of states visited by Y(t), Δ01,... the sojourn times in each state, N(t) the number of transitions before t and \(\Delta _t = t - \sum\limits_{k = 0}^{N(t) - 1} {\Delta _k }\). For each k ε S, let Tk(t) be an operator semigroup on a Banach space L with infinitesimal generator ak. Define Tλ (t,ω)=\(T_{\xi _0 } (\tfrac{1}{\lambda }\Delta _0 )T_{\xi _1 } (\tfrac{1}{\lambda }\Delta _1 ) \cdot ... \cdot T_{\xi _{{\rm N}(\lambda t)} } (\tfrac{1}{\lambda }\Delta _{\lambda t} )\). It is known (Kurtz) that if

exist for all k = 1,2,...,n and \(\sum\limits_{i = 1}^n {\mu _i = 1}\), then under appropriate conditions the closure of a = \(\sum\limits_{i = 1}^n {\mu _i a_i }\)is the infinitesimal operator for a strongly continuous semigroup T(t) defined on L and Tλ(t,ω) converges almost surely to T(t) as λ → ∞. The existence and identification of this limit is of interest even when the closure of a is not a generator. A probabilistic version of this problem is given in the case of Markovian transition semi-group when the corresponding processes have identical hitting distributions. Sufficient conditions for the existence of limit are given. With S = {1,2} and \(\left\{ \begin{gathered}1,2n \leqslant t < 2n + 1 \hfill \\2,2n + 1 \leqslant t < 2n + 2 \hfill \\\end{gathered} \right.\), n = 0,1,2,..., the result is obtained by Loren Pitt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dynkin, E. B., Markov Processes, Vol. I, Springer-Verlag, 1965.

    Google Scholar 

  2. Hersh, R. and Griego, R. J., Random evolution, Markov chains, and systems of P.D.E., Proc. Nat. Acad. Sci. U.S.A., 62(1969), 305–308. MR42 #5099.

    Article  MathSciNet  MATH  Google Scholar 

  3. Kurtz, T. G., A random Trotter product formula, Proc. AMS 35(1972), 147–154.

    Article  MathSciNet  MATH  Google Scholar 

  4. Pitt, Loren, Product of Markovian Semigroups of Operators, Z. Wahr. Verw. Geb., 12, 241–254.

    Google Scholar 

Download references

Authors

Editor information

Mark A. Pinsky

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag

About this paper

Cite this paper

Wang, F.J.S. (1975). A random product of markovian semi-groups of operators. In: Pinsky, M.A. (eds) Probabilistic Methods in Differential Equations. Lecture Notes in Mathematics, vol 451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0068579

Download citation

  • DOI: https://doi.org/10.1007/BFb0068579

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07153-2

  • Online ISBN: 978-3-540-37481-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics