Skip to main content

The theory of virtual alphabets

  • Genetic Algorithms
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 496))

Abstract

This paper presents a theory of convergence for real-coded genetic algorithms—GAs that use floating-point or other high-cardinality codings in their chromosomes. The theory is consistent with the theory of schemata and postulates that selection dominates early GA performance and restricts subsequent search to intervals with above-average function value dimension by dimension. These intervals may be further subdivided on the basis of their attraction under genetic hillclimbing. Each of these subintervals is called a virtual character, and the collection of characters along a given dimension is called a virtual alphabet. It is the virtual alphabet that is searched during the recombinative phase of the genetic algorithm, and in many problems this is sufficient to ensure that good solutions are found. Although the theory helps explain why many problems have been solved using real-coded GAs, it also suggests that real-coded GAs can be blocked from further progress in those situations when local optima separate the virtual characters from the global optimum.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Goldberg, D. E. (1990). Real-coded genetic algorithms, virtual alphabets, and blocking (IlliGAL Report No. 90001). Urbana: University of Illinois at Urbana-Champaign, The Illinois Genetic Algorithms Laboratory.

    Google Scholar 

  • Goldberg, D. E., & Deb, K. (1990). A comparative analysis of selection schemes used in genetic algorithms (TCGA Report No. 90007). Tuscaloosa: University of Alabama, The Clearinghouse for Genetic Algorithms.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press.

    Google Scholar 

  • Wright, A. H. (1990). Genetic algorithms for real parameter optimization. Unpublished manuscript, University of Montana, Computer Science Department, Missoula.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Paul Schwefel Reinhard Männer

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, D.E. (1991). The theory of virtual alphabets. In: Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature. PPSN 1990. Lecture Notes in Computer Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029726

Download citation

  • DOI: https://doi.org/10.1007/BFb0029726

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54148-6

  • Online ISBN: 978-3-540-70652-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics