Skip to main content

Underground geodesy

  • II. Surface Geodetic Networks And Underground Geodesy
  • Conference paper
  • First Online:
  • 329 Accesses

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 12))

Abstract

The tunnelling work, for a particle accelerator, must be carried out within very strict and tight tolerances. The CERN Applied Geodesy Group has the task to regularly control the geometry of the galleries and caverns constructed for the LEP project. For this purpose, different means and methods have been developed and implemented, related to the link between the surface and underground geodetic networks, the guiding control with accurate gyro traverses and the check of cross sections with photoprofiling or profile scanners. Instruments and methods are described by the authors and the results presented.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Gervaise, Applied geodesy for CERN accelerators, Part I, Seminar on High Precision Geodetic Measurements, Facolta di Ingeneria di Bologna, (1984).

    Google Scholar 

  2. M. Mayoud, Applied geodesy for CERN accelerators, Part II, Ibid.

    Google Scholar 

  3. M. Hayotte, Tolérances, implantation et contrôle de la géométrie, Annexe 9 de l'Appel d'Offres CERN I-1061/SB-LEP.

    Google Scholar 

  4. J. Gervaise, First results of the geodetic measurements carried out with the terrameter, two-wavelength electronic distance measurement instrument, Paper presented at the Geodätisches Seminar über Electrooptische Präzisionsstreckenmessung, Münnchen, (1983).

    Google Scholar 

  5. J. Gervaise, J. Olsfors, The LEP trilateration network, these proceedings.

    Google Scholar 

  6. J. Iliffe, Three-dimensional adjustment in a local reference system, Ibid.

    Google Scholar 

  7. G. Bain et al., Automation by microcomputer of a geodetic distance measuring instrument: the Distinvar, CERN 85-16, (1985)

    Google Scholar 

  8. G. Bain et al., Le Gyroscope asservi — automation par micro-ordinateur, to be published.

    Google Scholar 

  9. J. Iliffe, M. Mayoud, Computation of the free oscillation of the GAK 1 CERN gyro by means of numerical integration, CERN, LEP-SU/int. 84-01, (1984)

    Google Scholar 

  10. J.-C. Fischer, Contribution à l'automatisation du Gyroscope de Théodolite WILD GAK1 en vue de son utilisation au CERN lors de l'implantation du LEP, Mémoire de Soutenance de Diplôme d'Ingénieur Géomètre, ENSAIS, (1986).

    Google Scholar 

  11. M. Mayoud, Géomètrie Théorique du LEP, CERN LEP Note 456, (1983).

    Google Scholar 

  12. S. Burki, W. Gurtner, Deviation of the vertical, these proceedings.

    Google Scholar 

  13. H. Lançon, Le Profilomètre GEO-FENNEL FET2 et son exploitation dans le cadre du contrôle des ouvrages souterrains du LEP — comparaison avec la méthode du photoprofil, Mémoire de Soutenance de Diplôme d'Ingénieur Géomètre, ENSAIS, (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stuart Turner

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Fischer, JC., Hayotte, M., Mayoud, M., Trouche, G. (1987). Underground geodesy. In: Turner, S. (eds) Applied Geodesy. Lecture Notes in Earth Sciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0010117

Download citation

  • DOI: https://doi.org/10.1007/BFb0010117

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18219-1

  • Online ISBN: 978-3-540-47821-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics