Skip to main content

An overview of similarity methods to estimate turbulence quantities from sodar measurements in the convective boundary layer

  • Part Two Applications In The Atmosphere
  • Chapter
  • First Online:
Acoustic Remote Sensing Applications

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 69))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Melas, “Sodar estimates of surface heat flux and mixed layer depth compared with direct measurements', Atm. Environment, Vol 24A, No. 11, 2847–2853, 1990.

    Article  Google Scholar 

  2. Deardorff J.W. “Preliminary results from numerical integrations of the unstable boundary layer”, J. Atmos. Sci. 27, 1209–1211, 1970.

    Article  Google Scholar 

  3. Briggs G.A. “Analytical parametrizations of diffusion: The convective boundary layer”, J. Climate Appl. Meteorol. 24, 1167–1186, 1985.

    Article  Google Scholar 

  4. Briggs G.A. “Surface inhomogeneity effects on convective diffusion”, Boundary-Layer Meteorol. 45, 117–135, 1988.

    Article  Google Scholar 

  5. R.B. Stull, “An Introduction to Boundary Layer Meteorology” (Atmospheric Sciences Library, Kluwer Academic Publishers, Dordrecht, The Netherlands) 666 pp, 1988.

    Book  Google Scholar 

  6. S.P. Singal, “The use of an acoustic sounder in air quality studies”, J. Scient. Ind. Res. 47, 520–533, 1988.

    Google Scholar 

  7. S.P. Singal, “Monitoring air pollution related meteorology using SODAR: State of the art”, Appl. Phys. B 57, 65–82, 1993.

    Article  Google Scholar 

  8. W.D. Neff and R.L. Coulter, “Acoustic remote sensing”, in Probing the Atmospheric Boundary Layer, (D.H. Lenschow Ed., American Meteorological Society, Boston) 201–239, 1986.

    Google Scholar 

  9. J.C. Wyngaard, “Measurement Physics”, in Probing the Atmospheric Boundary Layer, (D.H. Lenschow Ed., American Meteorological Society, Boston) 5–18, 1986.

    Google Scholar 

  10. S. Vogt and P. Thomas, “Estimation of the sensible heat flux and the temperature structure parameter by sodar and sonic anemometer: an intercomparison”, Intern. J. of Remote Sensing 15, 507–516, 1994.

    Article  Google Scholar 

  11. A. Weill and H.R. Lehmann, “Twenty years of acoustic sounding—a review and some applications”. Z. Meteorol. 40, 241–250, 1990.

    Google Scholar 

  12. W.D. Neff, “Remote sensing of atmospheric processes over complex terrain”, in Atmospheric Processes Over Complex Terrain, edited by W. Blumen (Boston, M.A.: American Meteorological Society), pp. 173–228, 1990.

    Google Scholar 

  13. D. Melas, “Similarity methods to derive turbulence quantities and mixed layer depth from sodar measurements in the convective boundary layer: A review”, Appl. Phys. B 57, 11–17, 1993.

    Article  Google Scholar 

  14. J.E. Gaynor, “Accuracy of sodar wind variance measurements”, Intern. J. of Remote Sensing 15, 313–324, 1994.

    Article  Google Scholar 

  15. R.L. Schwiesow, “A comparative overview of active remote-sensing techniques”, in Probing the Atmospheric Boundary Layer, (D.H. Lenschow Ed., American Meteorological Society, Boston, 1986) 129–138, 1986.

    Google Scholar 

  16. P.L. Finkelstein, J.C. Kaimal, J.E. Gaynor, M.E. Graves and T.J. Lockhart, “Comparison of wind monitoring systems. Part II: Doppler sodars”, Atmos. Oceanic Technol. 3, 594–604, 1986.

    Article  Google Scholar 

  17. J. Keder, TH. Foken, W. Gerstmann and V. Schindler, “Measurements of wind parameters and heat flux with the Sensitron Doppler sodar”, Boundary-Layer Meteorol. 46, 195–204, 1989.

    Article  Google Scholar 

  18. D.N. Asimakopoulos, T.J. Moulsley, C.G. Helmis, D.P. Lalas and J. Gaynor, “Quantitative low-level acoustic sounding and comparison with direct measurements”, Boundary-Layer Meteorol. 27, 1–26, 1983.

    Article  Google Scholar 

  19. W.D. Neff, “Mesoscale air quality studies with meteorological remote sensing systems”, Intern. J. of Remote Sensing 15, 393–426, 1994.

    Article  Google Scholar 

  20. D.A. Haugen and J.C. Kaimal, “Measuring temperature structure parameter profiles with an acoustic sounder”, J. Appl. Meteorol. 17, 895–899, 1978.

    Article  Google Scholar 

  21. J.C. Kaimal, N.L. Abshire, R.B. Chadwick, M.T. Decker, W.H. Hooke, R.A. Kropfli, W.D. Neff, F. Pasqualucci and P.H. Hildebrand, “Estimating the depth of the daytime convective boundary layer”, J. Appl. Meteorol. 21, 1123–1129, 1982.

    Article  Google Scholar 

  22. F. Beyrich, “On the use of SODAR data to estimate mixing height”, Appl. Phys. B 57, 27–35, 1993.

    Article  Google Scholar 

  23. S. Nichols and C.J. Readings, “Aircraft observations of the structure of the lower boundary layer over the sea, Quart. J.R. Meteorol. Soc. 105, 785–802, 1979.

    Article  Google Scholar 

  24. H.R. Olesen, S.E. Larsen and J. Hojstrup, “Modeling velocity spectra in the lower part of the planetary boundary layer”, Boundary-Layer Meteorol. 29, 285–312, 1984.

    Article  Google Scholar 

  25. A.A.M. Holtslag and F.T.M. Nieuwstadt, “Scaling the atmospheric boundary layer”, Boundary-Layer Meteorol. 36, 201–209, 1986.

    Article  Google Scholar 

  26. C.A. Paulson, “The mathematical representation of wind speed and temperature in the unstable atmospheric surface layer”, J. Appl. Meteorol. 9, 857–861, 1970.

    Article  Google Scholar 

  27. U. Hogstrom, “Non-dimensional wind and temperature profiles in the atmospheric surface layer: Reevaluated”, Boundary-Layer Meteorol. 42, 55–78, 1988.

    Article  Google Scholar 

  28. J. Wieringa, “Representative roughness parameters for homogeneous terrain”, Boundary-Layer Meteorol., 63, 323–363, 1992.

    Article  Google Scholar 

  29. R.J. Barthelmie, J.P. Palutikof and T.D. Davies, “Estimation of sector roughness lengths and the effect on prediction of the vertical wind speed profile”, Boundary-Layer Meteorol. 66, 19–47, 1993.

    Article  Google Scholar 

  30. Z. Sorbjan, Coulter R.L., M.L. Wesely, “Similarity scaling applied to sodar observations of the convective boundary layer above an irregular hill”, Boundary-Layer Meteorol. 56, 33–50, 1991.

    Article  Google Scholar 

  31. G. Dubosclard, “A comparison between observed and predicted values for the entrainment in planetary boundary layer”, Boundary-Layer Meteorol. 18, 473–483, 1980.

    Article  Google Scholar 

  32. E. Batchvarova and S.E. Gryning, “Applied model for the Growth of the Daytime Mixed Layer”, Boundary-Layer Meteorol. 56, 261–274, 1991.

    Article  Google Scholar 

  33. D. Melas and H.D. Kambezidis, “The depth of the internal boundary layer over an urban area under sea-breeze conditions”, Boundary-Layer Meteorol. 61, 247–264, 1992.

    Article  Google Scholar 

  34. P. Sen Gupta, P.K. Kunnikrishnan, V. Radhika and K.N. Nair, “Estimating surface sensible heat flux and surface measurements in the evolving boundary layer”, Atmos. Res. 20, 119–123, 1986.

    Article  Google Scholar 

  35. J.R. Garratt, J.C. Wyngaard, R.J. Francey, “Winds in the atmospheric boundary layer” J. Atmos. Sci. 39, 1307–1316, 1982.

    Article  Google Scholar 

  36. D. Melas and H.D. Kambezidis, “A similarity method to derive turbulence parameters and mixed-layer depth from sodar measurements”, Intern. J. of Remote Sensing 15, 499–505, 1994.

    Article  Google Scholar 

  37. R.L. Coulter and M.L. Wesely, “Estimates of surface heat flux from sodar and laser scintillations”, J. Appl. Meteorol. 19, 1209–1222, 1980.

    Article  Google Scholar 

  38. A. Weill, C. Klapisz, B. Strauss, F. Baudin, C. Jaupart, P. Van Grunderbeeck and J.P. Goutorbe, “Measuring heat flux and structure functions of temperature fluctuations”, J. Appl. Meteorol. 19, 199–205, 1980.

    Article  Google Scholar 

  39. L. Enger, “Simulation of dispersion in complex terrain. Part C. A dispersion model for operational use”, Atmospheric Environment. vol. 24A, No. 9, 2457–2471, 1990.

    Article  Google Scholar 

  40. T.J. Moulsley, D.N. Asimakopoulos, R.S. Cole, B.A. Crease and S.J. Caughey, “Measurement of boundary layer structure parameter profiles by acoustic sounding and comparison with direct measurements”, Quart. J.R. Met. Soc. 107, 203–230, 1981.

    Article  Google Scholar 

  41. A. Weill, C. Klapisz and F. Baudin, “The CRPE minisodar: applications in micrometeorology and in physics of precipitation”, Atmos. Res. 20, 317–333, 1986.

    Article  Google Scholar 

  42. D. Melas, “Using a simple resistance law to estimate friction velocity from sodar measurements”, Boundary-Layer Meteorol. 57, 275–287, 1991.

    Article  Google Scholar 

  43. S.J. Caughey, “Observed characteristics of the atmospheric boundary layer”. In Atmospheric Turbulence and Air Pollution Modelling (F.T.M. Nieuwstadt and H. Van Dop, Eds), D. Reidel, Dordrecht, The Netherlands, 107–158, 1982.

    Google Scholar 

  44. S.P. Singal, B.S. Gera and S.K. Aggarwal, “Nowcasting by acoustic remote sensing: experiences with the systems established at the National Physical Laboratory, New Delhi, J. Scient. Ind. Res. 43, 469–488, 1984.

    Google Scholar 

  45. P.R. Best, J. Ewald, M. Kanowski, “The estimation of pollutant dispersal from Queensland power station”. In Proc. of the 7th International Clean Air Conference, (Clean Air Society of Australia and New Zealand, Adelaide, Australia) edited by K.A. Webb and A.I. Smith, August 24–28, 1981, 429–448.

    Google Scholar 

  46. F. Beyrich, “Sodar estimates of surface heat flux and mixed layer depth compared with direct measurements: Discussion”, Atm. Environment 26A, No. 13, 2459–2461, 1992.

    Article  Google Scholar 

  47. E. Batchvarova and S.E. Gryning, “Applied Model for the height of the Daytime Mixed Layer and the entrainment zone”, submitted to Boundary-Layer Meteorol., 56, 261–274, 1990.

    Article  Google Scholar 

  48. D.J. Thomson, “An Analytical solution of Tennekes' equations for the growth of boundary-layer depth”, Boundary-Layer Meteor. 59, 227–229, (1992).

    Article  Google Scholar 

  49. S.E. Gryning, “The Oresund experiment—A Nordic mesoscale dispersion experiment over a land-water-land area”, Bulletin of the American Meteorological Society 16, 1403–1407, 1985.

    Article  Google Scholar 

  50. J.C. Wyngaard, “Lectures on the planetary boundary layer”. In Mesoscale Meteorology: Theories, Observations, and Models (D.K. Lilly and T. Gal-Chen eds.), D. Reidel, Dordrecht, The Netherlands, 1983.

    Google Scholar 

  51. J.W. Deardorff, “Numerical investigation of neutral and unstable planetary boundary layer”, J. Atmos. Sci. 29, 91–115, 1972.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. P. Singal

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Narosa Publishing House

About this chapter

Cite this chapter

Melas, D. (1997). An overview of similarity methods to estimate turbulence quantities from sodar measurements in the convective boundary layer. In: Singal, S.P. (eds) Acoustic Remote Sensing Applications. Lecture Notes in Earth Sciences, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009572

Download citation

  • DOI: https://doi.org/10.1007/BFb0009572

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61612-2

  • Online ISBN: 978-3-540-70743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics