Skip to main content

Virtual Surgery, Applications and Limitations

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

Virtual Reality (VR) is a widespread topic not only in computer graphics but also in many other fields. In this paper, virtual reality and Augmented Reality (AR) in medicine especially in virtual surgery is taken into consideration. This survey consists of a systematic collection of existing methods and techniques for virtual surgery using Augmented Reality. The motive for doing this study was the current stage of AR technology in virtual surgery. To figure out such problem, this study attempts to critically review the application and limitation of well-known methods to provide researchers with backgrounds on outdated and latest AR technologies in virtual surgery. In this study widely used styles, which have been employed in virtual surgery, is classified and systemized. The direction that each subject is going is introduced. We hope that this study could help researchers to figure out what stage are the current AR researches not only in virtual surgery but also in other parts of medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buckwalter JA, Martin JA (2006) Osteoarthritis. Adv Drug Deliv Rev 58(2):150–167. doi:10.1016/j.addr.2006.01.006. http://www.sciencedirect.com/science/article/pii/S0169409X06000135. Drug Delivery in Degenerative Joint Disease

  2. Kolivand H, Sunar MS (2014) Realistic outdoor rendering in augmented reality. PLoS ONE 9(9):e108334. doi:10.1371/journal.pone.0108334

    Article  Google Scholar 

  3. Kolivand H, Sunar MS (2014) Covering photorealistic properties of outdoor components with the effects of sky color in mixed reality. Multimedia Tools Appl 72(3):2143–2162

    Article  Google Scholar 

  4. Kolivand H, Sunar MS (2014) A quadratic spline approximation using detail multi-layer for soft shadow generation in augmented reality. Multimedia Tools Appl 73(3):1225–1245

    Article  Google Scholar 

  5. Bremner J, Lawrence J, Miall WE (1968) Degenerative joint disease in a jamaican rural population. Ann Rheum Dis 27(4):326

    Google Scholar 

  6. Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF (1987) The prevalence of knee osteoarthritis in the elderly. The framingham osteoarthritis study. Arthritis Rheum 30(8):914–918

    Article  Google Scholar 

  7. Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM (1995) Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum 38(8):1134–1141

    Article  Google Scholar 

  8. Ku ̈hnapfel U, Cakmak HK, Maaß H (2000) Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput Graphics 24(5):671–682

    Google Scholar 

  9. Clarke TL (1995) Distributed interactive simulation systems for simulation and training in the aerospace environment. Society of photo-optical instrumentation engineers (SPIE)

    Google Scholar 

  10. Haluck RS, Marshall RL, Krummel TM, Melkonian MG (2001) Are surgery training programs ready for virtual reality? a survey of program directors in general surgery. J Am Coll Surg 193(6):660–665

    Article  Google Scholar 

  11. Garbey M, Bass B, Berceli S (2012) Multiscale mechanobiology modeling for surgery assessment. Acta Mech Sin 28(4):1186–1202

    Article  MATH  Google Scholar 

  12. Satava RM (1996) Medical virtual reality. the current status of the future. Stud Health Technol Inform 29:100

    Google Scholar 

  13. Delingette H, Ayache N (2004) Soft tissue modeling for surgery simulation. Handb Numer Anal 12:453–550

    MathSciNet  Google Scholar 

  14. Satava RM (1995) Medicine 2001: the king is dead. In: Proceedings of interactive technology and new paradigm for healthcare conference, pp 334–339

    Google Scholar 

  15. Sorid D, Moore SK (2000) The virtual surgeon [virtual reality trainer]. IEEE Spectr 37(7):26–31

    Article  Google Scholar 

  16. Barbič J, James DL (2005) Real-time subspace integration for st. venant-kirchhoff deformable models. In: ACM transactions on graphics (TOG), vol 24. ACM, pp 982–990

    Google Scholar 

  17. Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. In: ACM Siggraph computer graphics, vol 20. ACM, pp 151–160

    Google Scholar 

  18. Meier U, López O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197

    Article  Google Scholar 

  19. Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis Comput 16(8):437–452

    Article  MATH  Google Scholar 

  20. Famaey N, Sloten JV (2008) Soft tissue modelling for applications in virtual surgery and surgical robotics. Comput methods biomech biomed Eng 11(4):351–366

    Article  Google Scholar 

  21. Lee Y, Terzopoulos D, Waters K (1995) Realistic modeling for facial animation. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, ACM, pp 55–62

    Google Scholar 

  22. Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) Gpu-basedrealtime soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103(2):159–168

    Article  Google Scholar 

  23. Jerabkova L, Kuhlen T (2008) Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput Graphics Appl 29(2):61–71

    Article  Google Scholar 

  24. Vigneron LM, Verly JG, Warfield SK (2004) On extended finite element method (xfem) for modelling of organ deformations associated with surgical cuts. In: Medical simulation, Springer, pp 134–143

    Google Scholar 

  25. Zhong H, Peters T (2007) A real time hyperelastic tissue model. Comput Methods Biomech Biomed Eng 10(3):185–193

    Article  Google Scholar 

  26. Zhong H, Wachowiak MP, Peters TM (2005) A real time finite element based tissue simulation method incorporating nonlinear elastic behavior. Comput Methods Biomech Biomed Eng 8(3):177–189

    Article  Google Scholar 

  27. Bonet J (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    Google Scholar 

  28. De S, Lim YJ, Manivannan M, Srinivasan MA (2006) Physically realistic virtual surgery using the point-associated finite field (paff) approach. Presence: Teleoperators Virtual Environ 15(3):294–308

    Article  Google Scholar 

  29. Basdogan C, De S, Kim J, Muniyandi M, Kim H, Srinivasan MA (2004) Haptics in minimally invasive surgical simulation and training. IEEE Comput Graphics Appl 24(2):56–64

    Article  Google Scholar 

  30. Lim YJ, De S (2007) Real time simulation of nonlinear tissue response in virtual surgery using the point collocation-based method of finite spheres. Comput Methods Appl Mech Eng 196(31):3011–3024

    Article  MATH  Google Scholar 

  31. Deo D, De S (2009) Phyness: a physics-driven neural networks-based surgery simulation system with force feedback. In: EuroHaptics conference, 2009 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics 2009. Third Joint, pp 30–34

    Google Scholar 

  32. Bassingthwaighte J, Hunter P, Noble D (2009) The cardiac physiome: perspectives for the future. Exp Physiol 94(5):597–605

    Article  Google Scholar 

  33. Hunter P, Nielsen P (2005) Astrategyforintegrativecomputationalphysiology. Physiology 20(5):316–325

    Article  Google Scholar 

  34. Hunter PJ (2006) Modeling human physiology: the iups/embs physiome project. Proc IEEE 94(4):678–691

    Article  Google Scholar 

  35. Wilson N, Wang K, Dutton RW, Taylor C (2001) A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. In: Medical image computing and computer assisted intervention–MICCAI 2001, Springer, pp 449–456

    Google Scholar 

  36. Guiatni M, Riboulet V, Duriez C, Kheddar A, Cotin S (2013) A combined force and thermal feedback interface for minimally invasive procedures simulation. IEEE/ASME Trans Mechatron 18(3):1170–1181

    Article  Google Scholar 

  37. Chacko BG, Sawant H, Shankapal S (2008) Virtual surgery on geometric model of real human organ data. A supplement to IEI News

    Google Scholar 

  38. Gelesko S, Markiewicz MR, Weimer K, Bell RB (2012) Computer-aided orthognathic surgery. Atlas Oral Maxillofac Surg Clin 20(1):107–118

    Article  Google Scholar 

  39. Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D et al (2001) Fully automatic anatomical, pathological, and functional segmentation from ct scans for hepatic surgery. Comput Aided Surg 6(3):131–142

    Article  Google Scholar 

  40. Pednekar A, Kakadiaris IA (2000) Applications of virtual reality in surgery. In: Indian conference on computer vision, graphics and image processing, graphics and applications session, Bangalore, India (2000)

    Google Scholar 

  41. Ayache N (1995) Medical computer vision, virtual reality and robotics. Image Vis Comput 13(4):295–313

    Article  Google Scholar 

  42. Hong J, Matsumoto N, Ouchida R, Komune S, Hashizume M (2009) Medicalnavigation system for otologic surgery based on hybrid registration and virtual intraoperative computed tomography. IEEE Trans Biomed Eng 56(2):426–432

    Article  Google Scholar 

  43. Park S, Howe RD, Torchiana DF, Virtual fixtures for robotic cardiac surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2001, Springer, pp. 1419–1420

    Google Scholar 

  44. Peters TM, Linte CA, Moore J, Bainbridge D, Jones DL, Guiraudon GM (2008) Towards a medical virtual reality environment for minimally invasive cardiac surgery. In: Medical imaging and augmented reality, Springer, pp 1–11

    Google Scholar 

  45. Kaye J, Metaxas DN, Primiano Jr FP (1997) A 3d virtual environment for modeling mechanical cardiopulmonary interactions. In: CVRMed-MRCAS’97, Springer, pp 389–398

    Google Scholar 

  46. Sørensen TS, Mosegaard J (2006) Virtual open heart surgery: training complex surgical procedures in congenital heart disease. In: ACM SIGGRAPH 2006 emerging technologies, ACM, p 35

    Google Scholar 

  47. Sørensen TS, Mosegaard J (2005) Surgical planning in congenital heart disease by means of real-time medical visualisation and simulation. ACM SIGGRAPH Animation Festiv 295

    Google Scholar 

  48. Mosegaard J, Sørensen TS (2005) Gpu accelerated surgical simulators for complex morphology. In: Proceedings virtual reality, VR 2005, pp 147–153

    Google Scholar 

  49. Mosegaard J, Sørensen TS (2005) Real-time deformation of detailed geometry based on mappings to a less detailed physical simulation on the gpu. In: Proceedings of the 11th Eurographics conference on virtual environments, pp 105–111

    Google Scholar 

  50. Hemminger BM, Molina PL, Egan TM, Detterbeck FC, Muller KE, Coffey CS, Lee JK (2005) Assessment of real-time 3d visualization for cardiothoracic diagnostic evaluation and surgery planning. J Digit Imaging 18(2):145–153

    Article  Google Scholar 

  51. Razavi RS, Hill DL, Muthurangu V, Miquel ME, Taylor AM, Kozerke S, Baker EJ (2003) Three-dimensional magnetic resonance imaging of congenital cardiac anomalies. Cardiol Young 13(05):461–465

    Article  Google Scholar 

  52. Sorensen TS, Pedersen EM, Hansen OK, Sorensen K (2003) Visualization of morphological details in congenitally malformed hearts: virtual three-dimensional reconstruction from magnetic resonance imaging. Cardiol Young 13(5):451–460

    Google Scholar 

  53. Aggarwal R, Ward J, Balasundaram I, Sains P, Athanasiou T, Darzi A (2007) Proving the effectiveness of virtual reality simulation for training in laparoscopic surgery. Ann Surg 246(5):771–779

    Article  Google Scholar 

  54. Duan Z, Yuan Z, Liao X, Si W, Zhao J (2011) 3d tracking and positioning of surgical instruments in virtual surgery simulation. J Multimedia 6(6):502–509

    Article  Google Scholar 

  55. Frey W, Zyda M, Mcghee R, Cockayne B (1996) Off-the-shelf, real-time, human body motion capture for synthetic environments. Computer Science Department, Naval Postgraduate School, Monterey

    Google Scholar 

  56. Gillio RG (1999) Virtual surgery system. US Patent 5,882,206

    Google Scholar 

  57. Prisman E, Daly MJ, Chan H, Siewerdsen JH, Vescan A, Irish JC (2011) Real-time tracking and virtual endoscopy in cone-beam ct-guided surgery of the sinuses and skull base in a cadaver model. In: International forum of allergy and rhinology, vol 1. Wiley Online Library, pp 70–77

    Google Scholar 

  58. Simon D (1997) Intra-operative position sensing and tracking devices. In: Proceedings of the first joint CVRMed/MRCAS Conference, pp 62–64

    Google Scholar 

  59. Verma D, Wills D, Verma M (2003) Virtual reality simulator for vitreoretinal surgery. Eye 17(1):71–73

    Article  Google Scholar 

  60. Jambon AC, Dubois P, Karpf S (1997) Alow-cost training simulator for initial formation in gynecologic laparoscopy. In: CVRMed-MRCAS’97, Springer, pp 347–356

    Google Scholar 

  61. Gladstone HB, Raugi GJ, Berg D, Berkley J, Weghorst S, Ganter M (2000) Virtual reality for dermatologic surgery: virtually a reality in the 21st century. J Am Acad Dermatol 42(1):106–112

    Article  Google Scholar 

  62. Hoffman H, Vu D (1997) Virtual reality: teaching tool of the twenty-first century? Acad Med 72(12):1076–1081

    Article  Google Scholar 

  63. Sørensen TS, K ̈orperich H, Greil GF, Eichhorn J, Barth P, Meyer H, Pedersen EM, Beerbaum P (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease a validation study. Circulation 110(2):163–169

    Google Scholar 

  64. Gorman PJ, Meier AH, Krummel TM (1999) Simulation and virtual reality in surgical education: real or unreal? Arch Surg 134(11):1203–1208

    Article  Google Scholar 

  65. Piromchai P (2014) Virtual reality surgical training in ear, nose and throat surgery. Int J Clin Med 5(10):558

    Article  Google Scholar 

  66. Sørensen TS, Mosegaard J (2006) An introduction to gpu accelerated surgical simulation. In: Biomedical simulation, Springer, pp. 93–104

    Google Scholar 

  67. Fuchs H, Livingston MA, Raskar R, Keller K, Crawford JR, Rademacher P, Drake SH, Meyer AA et al (1998) Augmented reality visualization for laparoscopic surgery. Springer, Berlin

    Google Scholar 

  68. Haouchine N, Dequidt J, Berger MO, Cotin S et al (2013) Deformation-based augmented reality for hepatic surgery. In: Medicine meets virtual reality, MMVR 20

    Google Scholar 

  69. López-Mir F, Naranjo V, Fuertes J, Alcañiz M, Bueno J, Pareja E (2013) Design and validation of an augmented reality system for laparoscopic surgery in a real environment. BioMed Res Int

    Google Scholar 

  70. Nakamoto M, Ukimura O, Faber K, Gill IS (2012) Current progress on augmented reality visualization in endoscopic surgery. Curr Opin Urol 22(2):121–126

    Article  Google Scholar 

  71. Barton R, Krsek P, Spanel M, Svub M, Stancl V, Vadura J (2010) Virtual collaborative environment for radiological 3d consultations. In: IEEE biomedical engineering conference (CIBEC), 5th Cairo international, pp 70–74

    Google Scholar 

  72. Cleary K, Nguyen C (2001) State of the art in surgical robotics: clinical applications and technology challenges. Comput Aided Surg 6(6):312–328

    Google Scholar 

  73. Nonlinear continuum mechanics for finite element analysis (2014). http://grants.nih.gov/grants/guide/pa-files/PA-14-359.html

  74. Cavusoglu MC, Tendick F, Cohn M, Sastry S (1999) A laparoscopic telesurgical workstation. IEEE Trans Robot Autom 15(4):728–739

    Article  Google Scholar 

  75. Cavusoglu MC, Williams W, Tendick F, Sastry SS (2003) Robotics for telesurgery: second generation berkeley/ucsf laparoscopic telesurgical workstation and looking towards the future applications. Ind Robot Int J 30(1):22–29

    Article  Google Scholar 

  76. Hill JW, Hoist PA, Jensen JF, Goldman J, Gorfu Y, Ploeger DW (1998) Telepresence interface with applications to microsurgery and surgical simulation. Stud Health Technol Inform 50:96–102

    Google Scholar 

  77. McGovern K (1994) Applications of virtual reality to surgery. BMJ 308(6936):1054

    Article  Google Scholar 

  78. Sørensen TS, Mosegaard J (2005) Haptic feedback for the gpu-based surgical simulator. Stud Health Technol Inform 119:523–528

    Google Scholar 

  79. Basdogan C, Ho CH, Srinivasan MDA (2001) Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans Mechatron 6(3):269–285

    Google Scholar 

  80. Fischer A, Vance JM (2003) Phantom haptic device implemented in a projection screen virtual environment. In: Proceedings of the workshop on virtual environments 2003, ACM, pp 225–229

    Google Scholar 

  81. Itkowitz B, Handley J, Zhu W (2005) The open haptics toolkit: a library for adding 3d touch? navigation and haptics to graphics applications. In: Eurohaptics conference, 2005 and symposium on haptic interfaces for virtual environment and teleoperator systems, 2005. World Haptics 2005. First Joint, pp 590–591

    Google Scholar 

  82. Srinivasan MA, Basdogan C (1997) Haptics in virtual environments: taxonomy, research sta-tus, and challenges. Comput Graphics 21(4):393–404

    Article  Google Scholar 

  83. You S, Hong L, Wan M, Junyaprasert K, Kaufman A, Muraki S, Zhou Y, Wax M, Liang Z (1997) Interactive volume rendering for virtual colonoscopy. In: Visualization’97, Proceedings, pp 433–436

    Google Scholar 

  84. Burdea G, Patounakis G, Popescu V, Weiss RE (1998) Virtual reality training for the diagnosis of prostate cancer. In: ITAB 98. Proceedings. IEEE international conference on information technology applications in biomedicine, pp 6–13

    Google Scholar 

  85. Merril GL, Barker L (1996) Virtual reality debuts in the teaching laboratory innursing. J Infus Nurs 19(4):182–187

    Google Scholar 

  86. Stadie AT, Kockro RA, Reisch R, Tropine A, Boor S, Stoeter P, Perneczky A (2008) Virtual reality system for planning minimally invasive neurosurgery. J Neurosurg 108(2):382–394

    Article  Google Scholar 

  87. Burghart CR, Muenchenberg JE, Reinbold U (1998) A system for robot-assisted maxillofacial surgery. Stud Health Technol Inform 220–226

    Google Scholar 

  88. Neumann P, Faulkner G, Krauss M, Haarbeck K, Tolxdorff T (1998) Mevisto-jaw: a visualization-based maxillofacial surgical planning tool. In: Medical Imaging’98, international society for optics and photonics, pp 110–118

    Google Scholar 

  89. Robiony M, Salvo I, Costa F, Zerman N, Bazzocchi M, Toso F, Bandera C, Filippi S, Felice M, Politi M (2007) Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work. J Oral Maxillofac Surg 65(6):1198–1208

    Article  Google Scholar 

  90. Wierzbicki M, Drangova M, Guiraudon G, Peters T (2004) Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries. Med Image Anal 8(3):387–401

    Article  Google Scholar 

  91. Ecke U, Klimek L, Mu ̈ller W, Ziegler R, Mann W (1998) Virtual reality: preparation 
and execution of sinus surgery. Comput Aided Surg 3(1):45–50

    Google Scholar 

  92. Fried MP, Sadoughi B, Gibber MJ, Jacobs JB, Lebowitz RA, Ross DA, Bent JP III, Parikh SR, Sasaki CT, Schaefer SD (2010) From virtual reality to the operating room: the endoscopic sinus surgery simulator experiment. Otolaryngol Head Neck Surg 142(2):202–207

    Article  Google Scholar 

  93. Tolsdorff B, Pommert A, H ̈ohne KH, Petersik A, Pflesser B, Tiede U, Leuwer R (2010) Virtual reality: a new paranasal sinus surgery simulator. The Laryngoscope 120(2):420–426

    Google Scholar 

  94. Beichel R, Schmalstieg D (2006) Liver surgery planning using virtual reality. IEEE Comput Graphics Appl 6:36–47

    Google Scholar 

  95. Marescaux J, Clément JM, Tassetti V, Koehl C, Cotin S, Russier Y, Mutter D, Delingette H, Ayache N (1998) Virtual reality applied to hepatic surgery simulation: the next revolution. Ann Surg 228(5):627

    Article  Google Scholar 

  96. Suzuki N, Hattori A, Takatsu A, Kumano T, Ikemoto A, Adachi Y, Uchiyama A (1998) Virtual surgery system using deformable organ models and force feedback system with three fingers. In: Medical image computing and computer-assisted interventation MICCAI’98, Springer, pp 397–403

    Google Scholar 

  97. Colt HG, Crawford SW, Galbraith O (2001) Virtual reality bronchoscopy simulation revolution in procedural training. CHEST J 120(4):1333–1339

    Google Scholar 

  98. Moorthy K, Smith S, Brown T, Bann S, Darzi A (2003) Evaluation of virtual reality bronchoscopy as a learning and assessment tool. Respiration 70(2):195–199

    Article  Google Scholar 

  99. Grantcharov T, Bardram L, Funch-Jensen P, Rosenberg J (2003) Impact of hand dominance, gender, and experience with computer games on performance in virtual reality laparoscopy. Surg Endosc Intervent Tech 17(7):1082–1085

    Article  Google Scholar 

  100. Westwood J, Hoffman H, Stredney D, Weghorst S (1998) Virgy: a virtual reality and force feedback based endoscopic surgery simulator. Med Meets Virtual Real: Art Sci Technol: Healthc (R) Evolut 50:110

    Google Scholar 

  101. Morten B, Xiaolan Z (1998) Vr simulation of abdominal trauma surgery. Med Meets Virtual Real: Art Sci Technol Healthc (R) Evol 50:117

    Google Scholar 

  102. Peifer JW, Curtis WD, Sinclair MJ (1995) Applied virtual reality for simulation of endoscopic retrograde cholangio-pancreatography (ercp). Stud Health Technol Inform 29:36–42

    Google Scholar 

  103. Ahlberg G, Enochsson L, Gallagher AG, Hedman L, Hogman C, McClusky DA III, Ramel S, Smith CD, Arvidsson D (2007) Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 193(6):797–804

    Article  Google Scholar 

  104. Tseng C, Lee Y, Chan Y, Wu S, Chiu A (1998) A pc-based surgical simulator for laparoscopic surgery. Stud Health Technol Inform 50:155–160

    Google Scholar 

  105. Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, Flannery NM (2005) Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg 87(suppl 2):71–80

    Article  Google Scholar 

  106. Heng PA, Cheng CY, Wong TT, Xu Y, Chui YP, Chan KM, Tso SK (2004) A virtual-reality training system for knee arthroscopic surgery. IEEE Trans Inf Technol Biomed 8(2):217–227

    Article  Google Scholar 

  107. Blum T, Kleeberger V, Bichlmeier C, Navab N (2012) Mirracle: an augmented reality magic mirror system for anatomy education. In: IEEE virtual reality short papers and posters (VRW), pp 115–116

    Google Scholar 

  108. Ehara J, Saito H (2006) Texture overlay for virtual clothing based on pca of silhouettes. In: Proceedings of the 5th IEEE and ACM international symposium on mixed and augmented reality, IEEE computer society, pp 139–142

    Google Scholar 

  109. Eisert P, Fechteler P, Rurainsky J (2008) 3-d tracking of shoes for virtual mirror applications. In: IEEE conference on computer vision and pattern recognition, CVPR 2008, pp 1–6

    Google Scholar 

  110. Fiala M (2007) Magic mirror system with hand-held and wearable augmentations. In: Virtual reality conference ’07, pp 251–254

    Google Scholar 

  111. Blum T, Stauder R, Euler E, Navab N (2012) Superman-like x-ray vision: towards brain-computer interfaces for medical augmented reality. In: IEEE international symposium on mixed and augmented reality (ISMAR), pp 271–272

    Google Scholar 

  112. McFarland DJ, Krusienski DJ, Sarnacki WA, Wolpaw JR (2008) Emulation of computer mouse control with a noninvasive brain–computer interface. J Neural Eng 5(2):101

    Article  Google Scholar 

  113. Sielhorst T, Feuerstein M, Traub J, Kutter O, Navab N (2006) Campar: a software framework guaranteeing quality for medical augmented reality. Int J Comput Assist Radiol Surg 1:29

    Google Scholar 

  114. Navab N, Heining SM, Traub J (2010) Camera augmented mobile c-arm (camc): calibration, accuracy study, and clinical applications. IEEE Trans Med Imaging 29(7):1412–1423

    Article  Google Scholar 

  115. Meng M, Fallavollita P, Blum T, Eck U, Sandor C, Weidert S, Waschke J, Navab N (2013) Kinect for interactive ar anatomy learning. In: IEEE international symposium on mixed and augmented reality (ISMAR), pp 277–278

    Google Scholar 

  116. Davis L, Hamza-Lup FG, Daly J, Ha Y, Frolich S, Meyer C, Martin G, Norfleet J, Lin KC, Imielinska C et al (2002) Application of augmented reality to visualizing anatomical airways. In: AeroSense 2002, international society for optics and photonics, pp 400–405

    Google Scholar 

  117. Juan C, Beatrice F, Cano J (2008) An augmented reality system for learning the interior of the human body. In: Eighth IEEE international conference on advanced learning technologies, ICALT’08, pp 186–188

    Google Scholar 

  118. Lapeer R, Chen MS, Villagrana J (2004) An augmented reality based simulation of obstetric forceps delivery. In: Third IEEE and ACM international symposium on mixed and augmented reality, ISMAR 2004, pp 274–275

    Google Scholar 

  119. Navab N, Blum T, Wang L, Okur A, Wendler T (2012) First deployments of augmented reality in operating rooms. Computer 45(7):0048–55

    Article  Google Scholar 

  120. Traub J, Feuerstein M, Bauer M, Schirmbeck EU, Najafi H, Bauernschmitt R, Klinker G (2004) Augmented reality for port placement and navigation in robotically assisted minimally invasive cardiovascular surgery. In: International Congress Series, vol 1268. Elsevier, pp 735–740

    Google Scholar 

  121. Devillers O, Guigue P et al (2002) Faster triangle-triangle intersection tests. Tech Rep 4488, INRIA

    Google Scholar 

  122. Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, MacIntyre B (2001) Recent advances in augmented reality. IEEE Comput Graphics Appl 21(6):34–47

    Article  Google Scholar 

  123. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  124. Adhami L, Coste-Manière È (2003) Optimal planning for minimally invasive surgical robots. IEEE Trans Robot Autom 19(5):854–863

    Article  Google Scholar 

  125. Stefan P, Wucherer P, Oyamada Y, Ma M, Schoch A, Kanegae M, Shimizu N, Kodera T, Cahier S, Weigl M et al (2014) An ar edutainment system supporting bone anatomy learning. In: IEEE virtual reality (VR), pp 113–114

    Google Scholar 

  126. Kerby J, Shukur ZN, Shalhoub J (2011) The relationships between learning outcomes and methods of teaching anatomy as perceived by medical students. Clin Anat 24(4):489–497

    Article  Google Scholar 

  127. Patel K, Moxham B (2008) The relationships between learning outcomes and methods of teaching anatomy as perceived by professional anatomists. Clin Anat 21(2):182–189

    Article  Google Scholar 

  128. Rahman M, Mahmud P, Mashuk M et al (2013) Augmented and virtual reality based approaches in minimally invasive surgery training. In: International conference on informatics, electronics and vision (ICIEV), pp 1–4

    Google Scholar 

  129. Gao B, Guo S, Xiao N, Guo J (2012) Design of the virtual reality based robotic catheter system for minimally invasive surgery training. In: IEEE international conference on automation and logistics (ICAL), pp 611–616

    Google Scholar 

  130. Botden SM, Jakimowicz JJ (2009) What is going on in augmented reality simulation in laparoscopic surgery? Surg Endosc 23(8):1693–1700

    Article  Google Scholar 

  131. De Paolis LT, Aloisio G (2010) Augmented reality in minimally invasive surgery. In: Advances in biomedical sensing, measurements, instrumentation and systems, Springer, pp 305–320

    Google Scholar 

  132. Shuhaiber JH (2004) Augmented reality in surgery. Arch Surg 139(2):170–174

    Article  Google Scholar 

  133. Van Sickle K, McClusky D III, Gallagher A, Smith C (2005) Construct validation of the promis simulator using a novel laparoscopic suturing task. Surg Endosc Other Intervent Tech 19(9):1227–1231

    Article  Google Scholar 

  134. Botden SM, Buzink SN, Schijven MP, Jakimowicz JJ (2007) Augmented versus virtual reality laparoscopic simulation: what is the difference? World J Surg 31(4):764–772

    Article  Google Scholar 

  135. Stylopoulosu N, Cotin S, DawsonIA S, Onensmeyer M, Neumann P, Bardsley R, Russell M, Jackson P, Ranner D (2003) Celts: a clinically-based. Med Meets Virtual Real 11: NextMed Health Horiz 94:336

    Google Scholar 

  136. Rhienmora P, Gajananan K, Haddawy P, Dailey MN, Suebnukarn S (2010) Augmented reality haptics system for dental surgical skills training. In: Proceedings of the 17th ACM symposium on virtual reality software and technology, ACM, pp 97–98

    Google Scholar 

  137. Soyinka AS, Schollmeyer T, Meinhold-Heerlein I, Gopalghare DV, Hasson H, Mettler L (2008) Enhancing laparoscopic performance with the lts3e: a computerized hybrid physical reality simulator. Fertil Steril 90(5):1988–1994

    Article  Google Scholar 

  138. Rosen J, Brown JD, Barreca M, Chang L, Hannaford B, Sinanan M (2002) The blue dragon-a system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment. Stud Health Technol Inform 85:412–418

    Google Scholar 

  139. Yau H, Tsou L, Tsai M (2006) Octree-based virtual dental training system with a haptic device. Comput Aided Design Appl 3(1–4):415–424

    Article  Google Scholar 

  140. Stoyanov D, ElHelw M, Lo BP, Chung A, Bello F, Yang GZ (2003) Current issues of photorealistic rendering for virtual and augmented reality in minimally invasive surgery. In: Proceedings of seventh international conference on information visualization, pp 350–358

    Google Scholar 

Download references

Acknowledgments

This research was supported by Vot.Q.J130000.2428.01G75Flagship grant at the IJN MaGIC-X (Media and Games Innovation Centre of Excellence) UTM-IRDA Digital Media Centre Universiti Teknologi Malaysia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoshang Kolivand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kolivand, H., Tomi, B., Zamri, N., Shahrizal Sunar, M. (2015). Virtual Surgery, Applications and Limitations. In: Lai, K., Octorina Dewi, D. (eds) Medical Imaging Technology. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-287-540-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-540-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-539-6

  • Online ISBN: 978-981-287-540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics