Skip to main content

Biotechnological Interventions in Litchi (Litchi chinensis Sonn.) for the Improvement of Fruit Quality and Postharvest Storage

  • Chapter
  • First Online:

Abstract

Litchi (Litchi chinensis Sonn.) is an evergreen subtropical fruit, which is well acclaimed for its delicious, juicy aril and refreshing taste. Litchi fruit cultivation became an integral part of many Southeast Asian country’s economy and has a tremendous demand in domestic and export market. Insufficient genetic data about the native cultivar, poor knowledge and availability of the superior cultivars, lack of pest management control, and technological deficiency for the production and postharvest storage are the major constraints in litchi production and development all over the world. Biotechnological interventions have been successfully introduced in the field of litchi production for the massive micro-propagation, in vitro generation, and improvement of the quality of the available cultivars to produce superior cultivars with high yield. Widening of the genetic base of native cultivars using different molecular markers, introduction of genetic engineering to produce promising hybrids with large fruit, resistance to pericarp browning, and long life-span are highly recommended in this field with the help of biotechnological tools. In the present review, we have attempted to overview the combining research and development for the improvement of fruit quality and postharvest storage using various conventional as well as biotechnological tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adu-Gyamfi A (2009) Irradiation of fresh fruits and vegetables for improved quality. Ghana J Hortic 35:165–173

    Google Scholar 

  • Ahsan H (2006) Status report of India (1). In: Rolle RS (ed) Reports of the APO seminar on reduction of postharvest losses of fruit and vegetables. Asian Productivity Organization Japan and Food and Agriculture Organization of the United Nations Italy, 131–142

    Google Scholar 

  • Amin MN, Razzaque MA (1995) Induction of somatic embryogenesis in the cultures of zygotic embryos of lychee. Bangladesh J Bot 24:25–29

    Google Scholar 

  • Anuntalabhochai R, Chundet R, Chiangda J, Apavatjrut P (2002) Genetic diversity within lychee based on RAPD analysis. Acta Hortic 575:253–259

    Article  CAS  Google Scholar 

  • Aradhya MK, Zee FT, Manshardt RM (1995) Isozyme variation in lychee (Litchi chinensis Sonn). Sci Hortic 63:21–35

    Article  CAS  Google Scholar 

  • Arias RS, Borrone JW, Tondo CL, Kuhn DN, Irish BM, Schnell RJ (2012) Genomics of tropical fruit tree crops. In: Schnell RJ, Priyadarshan PM (eds) Genomics of tree crops. Springer, New York/London, pp 209–239

    Chapter  Google Scholar 

  • Aruoma OI (1999) Free radicals oxidative stress and anti-oxidants in human health and disease. J Am Oil Chem Soc 75:199–212

    Article  Google Scholar 

  • Arvanitoyannis IS, Khah EM, Christakou EC, Bletsos FA (2005) Effect of grafting and modified atmosphere packaging on eggplant quality parameters during storage. Int J Food Sci Technol 40:311–322

    Article  CAS  Google Scholar 

  • Bajpai A, Muthukumar M, Singh A, Nath V, Ravishankar H (2016) Narrow genetic base of Indian litchi (Litchi chinensis) cultivars based on molecular markers. Indian J Agric Sci 86:448–455

    Google Scholar 

  • Barman K, Siddiqui MW, Patel VB, Prasad M (2014) Nitric oxide reduces pericarp browning and preserves bioactive anti-oxidants in litchi. Sci Hortic 171:71–77

    Article  CAS  Google Scholar 

  • Baskaran R, Devi AU, Nayak CA, Kudachikar V, Prakash MK, Prakash M, Ramana K, Rastogi N (2007) Effect of low-dose γ-irradiation on the shelf life and quality characteristics of minimally processed potato cubes under modified atmosphere packaging. Radiat Phys Chem 76:1042–1049

    Article  CAS  Google Scholar 

  • Batt PJ, Cadilhon JJ (2007) Fresh produce supply chain management: overview of the proceedings and policy recommendations In: Batt PJ, Cadilhon J-J (eds) Proceedings of the international symposium on fresh produce supply chain management FAO AFMA Curtin University of Technology Department of Agriculture of the Thai Ministry of Agriculture and Cooperatives, p 10

    Google Scholar 

  • Batten DJ, Lahav E (1994) Base temperature for growth processes of lychee a recurrently flushing tree are similar but optima differ. Aust J Plant Physiol 2:589–602

    Article  Google Scholar 

  • Bhat R, Sridhar KR (2008) Nutritional quality evaluation of electron beam irradiated (Nelumbo nucifera) seeds. Food Chem 107:174–184

    Article  CAS  Google Scholar 

  • Bhat R, Sridhar KR, Bhushan B (2007) Free radicals in velvet bean seeds (Mucunapruriens L DC) and their status after γ-irradiation and conventional processing LWT. Food Sci Technol 40:1570–1577

    CAS  Google Scholar 

  • Bhoopat L, Srichairatanakool S, Kanjanapothi D, Taesotikul T, Thananchai H, Bhoopat T (2011) Hepatoprotective effects of lychee (Litchi chinensis Sonn): a combination of anti-oxidant and antiapoptotic activities. J Ethnopharmacol 136:55–66

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Pal A, Narwal R, Meena VS, Sharma PC, Singh J (2015) Combinatorial approaches for controlling pericarp browning in Litchi (Litchi chinensis) fruit. J Food Sci Technol 52:5418–5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogs J, Jaffe´ FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brat P, George S, Bellamy A, Du Chaffaut L, Scalbert A, Mennen L, Arnault N, Amiot MJ (2006) Daily polyphenol intake in France from fruit and vegetables. J Nutr 136: 2368–2373

    Google Scholar 

  • Callahan A, Scorza R (2007) Effects of a peach antisense ACC oxidase gene on plum fruit quality. Acta Hortic 738:567–573

    Article  CAS  Google Scholar 

  • Castellain RC, Gesser M, Tonini F (2014) Chemical composition anti-oxidant and antinociceptive properties of Litchi chinensis leaves. J Pharm Pharmacol 6:1796–1807

    Article  CAS  Google Scholar 

  • Chadha KL, Rajpoot MS (1969) Studies on floral biology, fruit set, and its retention and quality of some litchi varieties. Indian J Hortic 26:124–129

    Google Scholar 

  • Chandra R, Padaria JC (1999) Litchi shoot bud culture for micropropagation. J Appl Hortic 191:38–40

    Google Scholar 

  • Chang JC, Lin TS (2008) Fruit yield and quality as related to flushes of bearing shoots in litchi. J Am Soc Hortic Sci 133:284–289

    Google Scholar 

  • Chang JW, Teng YS, Yen CR (2012) Description and performance of new litchi varieties. In: Fang HH, Teng YS, Lee WL (Eds) Proceedings of the symposium on litchi industry development in Taiwan Taichung, Taiwan, pp 25–37

    Google Scholar 

  • Chang YY, Yang DJ, Chiu CH, Lin YL, Chen JW, Chen YC (2013) Antioxidative and anti-inflammatory effects of polyphenol-rich litchi (Litchi chinensis Sonn)-flower-water extract on livers of high-fat-diet fed hamsters. J Funct Foods 5:44–52

    Article  CAS  Google Scholar 

  • Chang J, Chang YA, Fang MY, Lin ML, Chang JW (2014) Estimation of the putative marginal timing for subsequent flowering in the last flush of litchi. J Taiwan Soc Hortic Sci 60:27–39

    Google Scholar 

  • Chang J, Chang YA, Tang L, Chang JW (2015) Characterization of generative development in early maturing litchi ‘Early Big’ a novel cultivar in Taiwan. Fruits 70:289–296

    Article  Google Scholar 

  • Chapman KR (1984) Tropical fruit cultivars collecting in SE Asia and China. Queensland Department of Primary Industries, p 123

    Google Scholar 

  • Chatterjee S, Desai SRP, Thomas P (1999) Effect of g-irradiation on the anti-oxidant activity of turmeric (Curcuma longa L) extracts. Food Res Int 32:487–490

    Article  CAS  Google Scholar 

  • Chaudry MA, Bibi N, Khan M, Badshah A, Qureshi MJ (2004) Irradiation treatment of minimally processed carrots for ensuring microbiological safety. Radiat Phys Chem 71:171–175

    Article  CAS  Google Scholar 

  • Chauhan S, Kaur N, Kishore L, Singh R (2014) Pharmacological evaluation of anti-inflammatory and analgesic potential of Litchi chinensis Gaertn (Sonn). Int J Pharm Pharm Sci 6:116–119

    Google Scholar 

  • Chawla HS (2004) Introduction to plant biotechnology, 2nd edn. Science Publishers, Beijing

    Google Scholar 

  • Cheng J, Long Y, Khan A, Wei C, Fu S, Fu J (2015) Development and significance of RAPD-SCAR markers for the identification of Litchi chinensis Sonn. by improved RAPD amplification and molecular cloning. Electron J Biotechnol 18:35–39

    Article  CAS  Google Scholar 

  • Chervin C, Boisseau P (1994) Quality maintenance of “ready-to-eat” shredded carrots by gamma irradiation. J Food Sci 59:359–361

    Article  Google Scholar 

  • Chikkasubbanna V (2006) Status report of India (2). In: Rolle RS (ed) Reports of the APO seminar on reduction of postharvest losses of fruit and vegetables. Asian Productivity Organization Japan and Food and Agriculture Organization of the United Nations Italy, pp 143–151

    Google Scholar 

  • Choudhury ML (2006) Recent developments in reducing post-harvest losses in the Asia-Pacific region. In: Rolle RS (ed) Reports of the APO seminar on reduction of postharvest losses of fruit and vegetables. Asian Productivity Organization Japan and Food and Agriculture Organization of the United Nations Italy, pp 15–22

    Google Scholar 

  • Cruz-Hernández A, Gómez-Lim M, Litz RE (1997) Transformation of mango somatic embryos. Acta Hortic 455:292–298

    Article  Google Scholar 

  • Das DK, Rahman A (2010) Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn (cv. Bedana). Curr Trends Biotechnol Pharm 4:820–833

    Google Scholar 

  • Das DK, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv Bedana). Plant Cell Tissue Organ Cult 109:315–325

    Article  CAS  Google Scholar 

  • Das DK, Shiva Prakash N, Sarin NB (1999) Multiple shoot induction and plant regeneration in litchi (Litchi chinensis Sonn). Plant Cell Rep 18:691–695

    Article  CAS  Google Scholar 

  • Deerasamee O, Chaisawadi S (2014) Clean production of freeze-dried lychee powder for medicinal herb and nutritional health benefits. Acta Hortic 1023:59–62

    Article  Google Scholar 

  • Degani C, Deng J, Beiles A, El-Batsri R, Goren M, Gazit S (2003) Identifying lychee cultivars and their genetic relationships using intersimple sequence repeat markers. J Am Soc Hortic Sci 128:838–845

    CAS  Google Scholar 

  • Deng CJ (2005) Studies on high frequency somatic embryogenesis and regeneration culture in litchi. Master’s thesis of Hunan Agricultural University Changsha Hunan, China

    Google Scholar 

  • Dhokane V, Hajare S, Shashidhar R, Sharma A, Bandekar J (2006) Radiation processing to ensure safety of minimally processed carrot (Daucus carota) and cucumber (Cucumis sativus): optimization of dose for the elimination of Salmonella Typhimurium and Listeria monocytogenes. J Food Prot 69:444–448

    Article  CAS  PubMed  Google Scholar 

  • Dias JS, Ortiz R (2014) Advances in transgenic vegetable and fruit breeding. Agric Sci 5:1448–1467

    Google Scholar 

  • Dias JS, Ryder E (2011) World vegetable industry: production breeding trends. Hortic Rev 38:299–356

    CAS  Google Scholar 

  • Dixon T, Batten D, Mcconchie C (2005) Genetic improvement of lychee in Australia ISHS. Acta Horticulture II nd international symposium on Lychee Longan Rambutan and other Sapindaceae plants held at Chiang Mai Thailand

    Google Scholar 

  • Doymaz I, Göl E (2011) Convective drying characteristics of eggplant slices. J Food Process Eng 34:1234–1252

    Article  Google Scholar 

  • Duan XW, Jiang YM, Su XG, Zhang ZQ, Shi J (2007) Anti-oxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem 101:1365–1371

    Article  CAS  Google Scholar 

  • Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW (2014) Temporal and spatial control of gene expression in horticultural crops. Horm Res 1:14047

    Article  CAS  Google Scholar 

  • Elitzur T, Yakir E, Quansah L, Zhangjun F, Vrebalov JT, Khayat E, Giovannon JJ, Friedman H (2016) Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security. Plant physiol 171:380–391

    Google Scholar 

  • Froneman JJ, Oosthuizen JH (1995) ETSG Litchi breeding programme. Yearbook-South African Litchi Growers Association 7:35–37

    Google Scholar 

  • Fu LF, Tang DY (1983) Induction pollen plants of litchi tree (Litchi chinensis Sonn). Acta Genet Sin 10:369–374

    Google Scholar 

  • Fu JX, Guo YS, Zhao HY, Xie JH, Liu CM, Hu YL, Ouyang R, Wang HC, Zhao YH, Zhou J, Huang SS (2010a) A study on the genetic effects on fruit quality traits and selection of promising individuals from a mapping population of litchi. Acta Hortic 863:175–182

    Article  Google Scholar 

  • Fu JX, Guo YS, Zhao HY, Xie JH, Liu CM, Hu YL, Ouyang R, Zhao YH, Zhou J, Huang SS (2010b) A study on the genetic effect and MAS exploration of juvenile phase and fruit maturation period in a mapping population of litchi. Acta Hortic 863:195–200

    Article  CAS  Google Scholar 

  • Fujii H, Nakagawa T, Nishioka H, Sato E, Ueno Y, Sun B, Nonaka GI (2007) Preparation characterization and anti-oxidative effects of oligomeric proanthocyanidin-L-cysteine complexes. J Agric Food Chem 55:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • Gangehei L, Ali M, Zhang W, Chen Z, Wakame K, Haidari M (2010) Oligonol a low molecular weight polyphenol of lychee fruit extract inhibits proliferation of influenza virus by blocking reactive oxygen species dependent ERK phosphorylation. Phytomedicine 17:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Matsuta N, Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv ‘LaFrance’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42

    Article  CAS  Google Scholar 

  • Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53:322–331

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan R, Vijayakumar M, Pushpangadan P (2005) Anti-oxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J Ethnopharmacol 99:165–178

    Article  CAS  PubMed  Google Scholar 

  • Gray DO, Fowden L (1962) α-(Methylenecyclopropyl) glycine from Litchi seeds. Biochem J 82:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groff GW (1943) Some ecological factors involved in successful lychee culture. Proc Florida State Hortic Soc 56:134–155

    Google Scholar 

  • Guo SY, Peng HX, He XH, Ding F, Li HL, Qin XQ, Xu N (2014) Callus induction from different explants of litchi. Southwest China J Agric Sci 27:748–753

    Google Scholar 

  • Hajare SN, Saxena S, Kumar S, Wadhawan S, More V, Mishra BB, Parte MN, Gautam S, Sharma A (2010) Quality profile of litchi (Litchi chinensis) cultivars from India and effect of radiation processing. Radiat Phys Chem 79:994–1004

    Article  CAS  Google Scholar 

  • Hallè F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, New York

    Book  Google Scholar 

  • Hebbar UH, Ramesh MN (2006) An improved process for the retention of nutrients during dry blanching of vegetables using infrared radiation. In: Indian Patent Application #602/DEL/2006

    Google Scholar 

  • Hieke S, Menzel CM, Doogan VJ, Lüdders P (2002) The relationship between fruit and leaf growth in lychee (Litchi chinensis Sonn). J Hortic Sci Biotechnol 77:320–325

    Article  Google Scholar 

  • Holcroft DM, Mitcham EJ (1996) Postharvest physiology and handling of litchi (Litchi chinensis Sonn). Postharvest Biol Technol 9:265–281

    Article  CAS  Google Scholar 

  • Hoppe S, Neidhart S, Zunker K, Hutasingh P, Carle R, Steinhart H, Paschke A (2006) The influences of cultivar and thermal processing on the allergenic potency of lychees (Litchi chinensis Sonn). Food Chem 96:209–219

    Article  CAS  Google Scholar 

  • Hsu CP, Lin CC, Huang CC (2012) Induction of apoptosis and cell cycle arrest in human colorectal carcinoma by litchi seed extract. J Biomed Biotechnol Article ID: 341479

    Google Scholar 

  • Huang XY, Kang DM, Ji ZL (1990) The optimum storage temperature for litchi fruits and chilling injury of them. J South China Agric Uni 11:13–18

    Google Scholar 

  • Huang XM, Subhadrabandhu S, Mitra SK, Ben-Arie R, Stern RA (2005a) Origin history production and processing. In: Menzel CM, Waite GK (eds) Litchi and longan. Comwell Press, Trowbridge, pp 1–23

    Google Scholar 

  • Huang X, Zeng L, Huang HB (2005b) Lychee and Longan production in China ISHS Acta Horticulturae 665: II nd international symposium on Litchi Longan Rambutan and other Sapindaceae Plants held at Thailand

    Google Scholar 

  • Huerta-Ocampo JÁ, Osuna-Castro JA, Lino-López GJ, Barrera-Pacheco A, Mendoza-Hernández G, De León-Rodríguez A, De la Rosa APB (2012) Proteomic analysis of differentially accumulated proteins during ripening and in response to 1-MCP in papaya fruit. J Proteomics 75:2160–2169

    Google Scholar 

  • Hussain PR, Omeera A, Suradkar PP, Dar MA (2014) Effect of combination treatment of gamma irradiation and ascorbic acid on physicochemical and microbial quality of minimally processed eggplant (Solanum melongena L). Radiat Phys Chem 103:131–141

    Article  CAS  Google Scholar 

  • Hwang JY, Lin JT, Liu SC (2013) Protective role of Litchi (Litchi chinensis Sonn) flower extract against Cadmium- and Lead-induced cytotoxicity and transforming growth factor β1-stimulated expression of smooth muscle-actin estimated with rat liver cell lines. J Funct Foods 5:698–705

    Article  CAS  Google Scholar 

  • Jeevitha GC, Hebbar HU, Raghavarao KSMS (2013) Electromagnetic radiation-based dry blanching of red bell peppers: a comparative study. J Food Process Eng 36:663–674

    Google Scholar 

  • Jeevitha G, Anto A, Chakkaravarthi A, Hebbar H (2015) Application of electromagnetic radiations and superheated steam for enzyme inactivation in green bell pepper. J Food Process Preserv 39:784–792

    Article  CAS  Google Scholar 

  • Jha S, Matsuoka T (2002) Surface stiffness and density of eggplant during storage. J Food Eng 54:23–26

    Article  Google Scholar 

  • Jiang Y, Yao L, Lichter A, Li J (2003) Post-harvest biology and technology of litchi fruit. Food Agric Environ 1:76–81

    Google Scholar 

  • Jiang G, Jiang YM, Yang B, Yu CY, Tsao R, Zhang HY, Chen F (2009) Structural characteristics and anti-oxidant activities of oligosaccharides from longan fruit pericarp. J Agric Food Chem 57:9293–9298

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Lin S, Wen L (2013) Identification of Anovel Phenolic Compound in Litchi (Litchi chinensis Sonn) Pericarp and Bioactivity Evaluation. Food Chem 136:563–568

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Bermúdez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kane ME (1996) Propagation from preexisting meristems. In: Plant tissue culture concepts and laboratory exercises. CRC Press, Boca Raton, pp 61–71

    Google Scholar 

  • Kang SW, Hahn S, Kim JK, Yang SM, Park BJ, Chul Lee S (2012) Oligomerized lychee fruit extract (OLFE) and a mixture of vitamin C and vitamin E for endurance capacity in a double blind randomized controlled trial. J Clin Biochem Nutr 50:106–113

    Article  CAS  PubMed  Google Scholar 

  • Kantharajah AS, McConchie CA, Dodd WA (1992) In vitro embryo culture and induction of multiple shoots in lychee (Litchi chinensis Sonn). Ann Bot 70:153–156

    Article  CAS  Google Scholar 

  • Kays SJ (2011) Cultivated vegetables of the world: a multilingual onomasticon. Wageningen Academic Publishers Wageningen, pp. 828

    Google Scholar 

  • Kays SJ, Dias JS (1995) Common names of commercially cultivated vegetables of the world in 15 languages. Econ Bot 49:115–152

    Article  Google Scholar 

  • Keatinge JDH, Waliyar F, Jammadass RH, Moustafa A, Andrade M, Drechsel P, Hughes JA, Kardivel P, Luther K (2010) Re-learning old lessons for the future of food: by bread alone no longer—diversifying diets with fruit and vegetables. Crop Sci 50:51–62

    Article  Google Scholar 

  • Khare CP (2007) Indian medicinal plants- an illustrated dictionary. Springer, New York, p 379

    Google Scholar 

  • Khurshid S, Ahmad I, Anjum MA (2004) Genetic diversity in different morphological characteristics of litchi (Litchi chinensis sonn). Int J Agric Biol 6:1062–1065

    Google Scholar 

  • Kirti S (2004) Vegetable research in India: some issues. In: Sant Kumar P, Joshi K, Pal S (eds) Impact of vegetable research in India. National Centre for Agricultural Economics and Policy Research, New Delhi, pp 3–8

    Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1 a TFL1-likegene reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Krattiger AF (1998) The importance of ag-biotech to global prosperity. International Service for the Acquisition of Agri-Biotech Applications

    Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88

    Article  Google Scholar 

  • Kuang ZS, Zhou LN, Ma XJ, Chen JQ, Cao J (1996) Study on the types of embryoid in tissue culture on Litchi chinensis Sonn. J Fruit Sci 13:25–28

    Google Scholar 

  • Kumar M (2006) Mass scale propagation of Litchi (Litchi chinensis Sonn.) through in vitro techniques. Ph.D thesis, Bhagalpur University, Bhagalpur, India

    Google Scholar 

  • Kumar M, Shiva Prakash N, Muthusamy A, Prasad US, Sarin NB (2004) Problems and prospective of mass scale production of litchi (Litchi chinensis Sonn) using in vitro cultures. In: Proceedings of national seminar on recent advances in production and post-harvest technology of Litchi for export. Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, pp 12–17

    Google Scholar 

  • Kumar M, Gupta M, Shrivastava D, Prasad M, Prasad US, Sarin NB (2010) Genetic relatedness among Indian litchi accessions (Litchi chinensis Sonn) by RAPD markers. Int J Agric Res 5:805–815

    CAS  Google Scholar 

  • Kumar D, Mishra DS, Chakraborty B, Kumar P (2013) Pericarp browning and quality management of litchi fruit by anti-oxidants and salicylic acid during ambient storage. J Food Sci Technol 50:797–802

    Article  CAS  PubMed  Google Scholar 

  • Lai CC, Lai ZX, Sang QL, Huang ZY, Huang Q (2010) Long-term subculture and maintenance of transgenic resistant embryogenic callus in litchi (Litchi chinensis Sonn). Acta Hortic 863:135–140

    Article  CAS  Google Scholar 

  • Lai B, Li XJ, Hu B, Qin YH, Huang XM, Wang HC, Hu GB (2014) LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS One 9:e86293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SJ, Park WH, Park SD, Moon HI (2009) Aldose reductase inhibitors from Litchi chinensis Sonn. J Enzyme Inhibit Med Chem 24:957–959

    Article  CAS  Google Scholar 

  • Lee JB, Shin YO, Min YK, Yang HM (2010) The effect of Oligonol intake on cortisol and related cytokines in healthy young men. Nutr Res Pract 4:203–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehner A, Meimoun P, Errakhi R, Madiona K, Barakate M, Bouteau F (2008) Toxic and signalling effects of oxalic acid: oxalic acid—natural born killer or natural born protector? Plant Signal Behav 3:746–748

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JG (2008) The litchi. China Agriculture Press, Beijing

    Google Scholar 

  • Li J, Jiang Y (2007) Litchi flavonoids: isolation identification and biological activity. Molecules 12:745–758

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liang H, Zhang MW, Zhang RF, Deng YY, Wei ZC, Zhang Y, Tang XJ (2012) Phenolic profiles and anti-oxidant activity of litchi (Litchi chinensis Sonn) fruit pericarp from different commercially available cultivars. Molecules 17:14954–14967

    Article  CAS  PubMed  Google Scholar 

  • Li CQ, Wang Y, Huang XM, Li J, Wang HC, Li JG (2013) De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading. BMC Genomics 14:552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Wang Y, Ying P, Ma W, Li J (2015a) Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi. Front Plant Sci 6:502

    PubMed  PubMed Central  Google Scholar 

  • Li T, Zhu H, Wu Q, Yang C, Duan X, Qu H, Yun Z, Jiang Y (2015b) Comparative proteomic approaches to analysis of litchi pulp senescence after harvest. Food Res Int 78:274–285

    Article  CAS  Google Scholar 

  • Liao YW, Ma SS (1998) Adventitious embryogenesis of Litchi chinensis. J Chin Soc Hortic Sci 44:29–40

    Google Scholar 

  • Lichter A, Dvir O, Rot I, Akerman M, Regev R, Wiesblum A, Fallik E, Zauberman G, Fuchs Y (2000) Hot water brushing: an alternative method to SO2 fumigation for color retention of litchi fruits. Postharvest Biol Technol 18:235–244

    Article  CAS  Google Scholar 

  • Li-hui Z, Liu-xin LU (2001) Transformation and transgenic plantlets regeneration of litchi (Litchi chinensis Sonn) with LEAFY gene. J Fujian Agric Forestry Uni 30:563–564

    Google Scholar 

  • Lin N, Xiao LY, Pan JQ (2008) Effects of semen Litchi on the expressions of S180 and EAC tumor cells and Bax and Bcl-2 proteins in rats. China Pharmacy 19:1138–1140

    Google Scholar 

  • Lin XL, Lai ZX, Xu QF (2010) High frequency plant regeneration via in vitro somatic embryogenesis in fifteen cultivars of Dimocarpus longan lour. Acta Hortic 863:155–160

    Article  CAS  Google Scholar 

  • Lin S, Yang B, Chen F, Jiang G, Li Q, Duan X, Jiang Y (2012) Enhanced DPPH radical scavenging activity and DNA protection effect of litchi pericarp extract by Aspergillus awamori bioconversion. Chem Cent J 6:108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CC, Chung YC, Hsu CP (2013) Anti-cancer potential of Litchi seed extract. World J Exp Med 3:56–61

    Google Scholar 

  • Lin YC, Chang JC, Cheng SY, Wang CM, Jhan YL, Lo IW, Hsu YM, Liaw CC, Hwang CC, Chou CH (2015) New bioactive chromanes from Litchi chinensis. J Agric Food Chem 63:2472–2478

    Article  CAS  PubMed  Google Scholar 

  • Litz RE (1988) Somatic embryogenesis from cultured leaf explants of the tropical tree Euphoria longan Stend. J Plant Physiol 132:190–193

    Article  CAS  Google Scholar 

  • Liu C, Mei M (2005) Classification of lychee cultivars with RAPD analysis. Acta Hortic 665:149–160

    Article  CAS  Google Scholar 

  • Liu L, Xie B, Cao S, Yang E, Xu X, Guo S (2007) A-type procyanidins from Litchi chinensis pericarp with anti-oxidant activity. Food Chem 105:1446–1451

    Article  CAS  Google Scholar 

  • Liu W, Xiao Z, Bao X, Yang X, Fang J, Xiang X (2015) Identifying litchi (Litchi chinensis Sonn) cultivars and their genetic relationships using single nucleotide polymorphism (SNP) markers. PLoS One 10:e0135

    Google Scholar 

  • Long Y, Cheng J, Mei Z, Zhao L, Wei C, Fu S, Khan MA, Fu J (2015) Genetic analysis of litchi (Litchi chinensis Sonn) in southern China by improved random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat. Mol Biol Rep 42:159–166

    Article  CAS  PubMed  Google Scholar 

  • Lv Q, Si M, Yan Y (2014) Effects of phenolic-rich Litchi (Litchi chinensis Sonn) pulp extracts on glucose consumption in human HepG2 cells. J Funct Foods 7:621–629

    Article  CAS  Google Scholar 

  • Lv Q, Luo F, Zhao X, Liu Y, Hu G, Sun C, Li X, Chen K (2015) Identification of proanthocyanidins from Litchi (Litchi chinensis Sonn) pulp by LC-ESI-QTOF-MS and their anti-oxidant activity. PLoS One 10:e0120480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma XY, Yi GJ, Huang XL, Zeng JW (2009) Leaf callus induction and suspension culture establishment in lychee (Litchi chinensis Sonn) cv Huaizhi. Acta Physiol Plant 31:401–405

    Article  Google Scholar 

  • Ma Q, Xie H, Li S, Zhang R, Zhang M, Wei X (2014) Flavonoids from the pericarps of Litchi chinensis. J Agric Food Chem 62:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Madhou M, Bahorun T, Hormaza JI (2010) Phenotypic and molecular diversity of litchi cultivars in Mauritius. Fruits 65:141–152

    Article  Google Scholar 

  • Madhou M, Normand F, Bahorun T, Hormaza JI (2013) Fingerprinting and analysis of genetic diversity of litchi (Litchi chinensis Sonn) accessions from different germplasm collections using microsatellite markers. Tree Genet Genomes 9:387–396

    Article  Google Scholar 

  • Magdalita PM, Laurena AC, Yabut-Perez BM, Mendoza EMT, Villegas VN, Botella JR (2002) Progress in the development of transgenic papaya: transformation of Solo papaya using ACC synthase antisense construct. Acta Hortic 575:171–176

    Article  CAS  Google Scholar 

  • Maity SC, Mitra SK (1996) Litchi. In: Fruits: tropical and subtropical. Naya Prakash, Calcutta, pp 420–448

    Google Scholar 

  • Mann C (1997) Reseeding the green revolution. Science 277:1038–1043

    Article  CAS  Google Scholar 

  • Marboh ES, Lal RL, Mishra DS, Goswami AK (2012) Effect of hot water treatment and oxalic acid on colour retention and storage quality of litchi fruit cv rose scented. Indian J Hortic 69:84–488

    Google Scholar 

  • McConchie CA, Batten DJ (1991) Fruit set in lychee (Litchi chinensis Sonn.) variation between flowers panicles and trees. Aust J Agric Res 42:1163–1172

    Article  Google Scholar 

  • McGloughlin MN (2010) Modifying agricultural crops for improved nutrition. New Biotechnol 27:494–504

    Article  CAS  Google Scholar 

  • Menzel CM (1985) Propagation of lychee: a review. Sci Hortic 25:31–48

    Article  Google Scholar 

  • Menzel CM (1995) Lychee: its origin distribution and production around the world. West Australian Nut and Tree Crop Association Year book 1941–48

    Google Scholar 

  • Menzel C (2002) The lychee crop in Asia and the Pacific. FAO, Bangkok

    Google Scholar 

  • Menzel CM, Simpson DR (1995) Temperature above 20 °C reduce flowering in lychee (Litchi chinensis Sonn). J Hortic Sci 70:981–987

    Article  Google Scholar 

  • Merkle SA (1995) Strategies for dealing with limitations of somatic embryogenesis in hardwood trees. Plant Tissue Cult Biotechnol 1:112–121

    Google Scholar 

  • Mishra B, Gautam S, Sharma A (2004) Shelf-life extension of fresh ginger (Zingiber officinale) by gamma irradiation. J Food Sci 69:274–279

    Article  Google Scholar 

  • Mitra SK, Dutta Ray SK, Mandal D (2011) Control of fruit cracking and sun-burning in litchi by irrigation and moisture conservation. In International Symposium on Tropical and Subtropical Fruits, 1024, pp 177–181

    Google Scholar 

  • Miura T, Kitadate K, Fujii H (2010) The function of the next generation polyphenol “Oligonol”. In: Bagchi D, Lau FC, Ghosh DK (eds) Biotechnology in functional foods and nutraceuticals. CRC Press, Boca Raton, pp 91–101

    Chapter  Google Scholar 

  • Moriwaki Y, Okuda C, Yamamoto A, Ka T, Tsutsumi Z, Takahashi S, Yamamoto T, Kitadate K, Wakame K (2011) Effects of Oligonol an oligomerized polyphenol formulated from lychee fruit on serum concentration and urinary excretion of uric acid. J Funct Foods 3:13–16

    Article  CAS  Google Scholar 

  • Morton J (1987) Pomegranate. In: Fruits of warm climates. Julia F Morton, Miami, pp 532–534

    Google Scholar 

  • Murthy ZVP, Joshi D (2007) Fluidized bed drying of aonla (Emblica officinalis). Dry Technol 25:883–889

    Article  CAS  Google Scholar 

  • Nacif SR, Sartori Paoli AA, Chamhum Salomãoa LC (2001) Morphological and anatomical development of the litchi fruit (Litchi chinensis Sonn cv Brewster). Fruits 56:225–233

    Article  Google Scholar 

  • Nagasawa J, Sugiyama K, Uchimaru J (2010) Oxidative stress in hypobaric and normobaric hypoxia and anti-oxidant effect of Oligonol. Japanese J Mountain Med 30:118–124

    Google Scholar 

  • Nagle M, Habasimbi K, Mahayothee B, Haewsungcharern M, Janjai S, Müller J (2011) Fruit processing residues as an alternative fuel for drying in northern Thailand. Fuel 90:818–823

    Article  CAS  Google Scholar 

  • Neidhart S, Hutasingh P, Carle R (2007) Innovative strategies for sustainable lychee processing. In: Heidhues F, Herrmann L, Neef A, Neidhart S, Pape J, Sruamsiri P, Thu DC, Valle Zárate A (eds) Sustainable land use in mountainous regions of southeast Asia Meeting the challenges of ecological socioeconomic and cultural diversity. Springer, Berlin, pp 147–158, 163–171

    Google Scholar 

  • Niemira BA, Sommers CH (2006) New applications in food irradiation. In: Heldman DR (ed) Encyclopedia of agricultural food and biological engineering Dekker Encyclopedias. Taylor & Francis publishers, New York

    Google Scholar 

  • Niemira BA, Fan X, Sokorai KJ, Sommers CH (2003) Ionizing radiation sensitivity of Listeria monocytogenes ATCC 49594 and ATCC 51742 inoculated on endive (Cichorium endiva). J Food Prot 66:993–998

    Article  PubMed  Google Scholar 

  • Nishizawa M, Hara T, Miura T, Fujita S, Yoshigai E, Ue H, Hayashi Y, Kwon AH, Okumura T, Isaka T (2011) Supplementation with a flavanol-rich lychee fruit extract influences the inflammatory status of young athletes. Phytother Res 25:1486–1493

    Article  CAS  PubMed  Google Scholar 

  • Ochese JJ, Soule MJ, Dhaiman MJ, Wehilburg C (1961) Other fruit crops. In: Tropical and sub-tropical agriculture, vol 1. MacMillan Publ Co, New York

    Google Scholar 

  • Ogata T, Yamanaka S, Shoda M, Urasaki N, Yamamoto T (2016) Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: pineapple mango and papaya. Breed Sci 66:69–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohno H, Sakurai T, Hisajima T (2008) The supplementation of Oligonol the new lychee fruit-derived polyphenol converting into a low-molecular form has a positive effect on fatigue during regular track-and-field training in young athletes. Adv Exercise Sports Physiol 13:93–99

    Google Scholar 

  • Oosthuizen JH (1991) Lychee cultivation in South Africa. Yearbook Australian Lychee Growers Association 1:51–55

    Google Scholar 

  • Ouyang S, Zheng X (1985) T-DNA transfer and tumor formation induced by Agrobacterium tumefaciens on Litchi chinensis. Acta Genet Sin 12:42–45

    Google Scholar 

  • Padilla G, Pérez JA, Perea-Arango I, Moon PA, Gómez-Lim MA, Borges AA, Expósito-Rodríguez M, Litz RE (2013) Agrobacterium tumefaciens-mediated transformation of ‘Brewster’ (‘Chen Tze’) litchi (Litchi chinensis Sonn) with the PISTILLATA cDNA in antisense In vitro. Cellular Dev Biol Plant 49:510–519

    Article  CAS  Google Scholar 

  • Palapol Y, Ketsa S, Lin-Wang K, Ferguson IB, Allan ACA (2009) MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L) fruit during ripening. Planta 229:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Joshi SK, Singh CP, Kumar S, Rajput S, Khandal RK (2013) Enhancing shelf life of litchi (Litchi chinensis) fruit through integrated approach of surface coating and gamma irradiation. Radiat Phys Chem 85:197–203

    Article  CAS  Google Scholar 

  • Paull RE, Duarte O (2011) Litchi and longan. In: Paull RE, Duarte O (eds) Tropical fruits 2nd ed. CABI, Oxfordshire, pp 221–251, 400 pp

    Google Scholar 

  • Peng G, Wu J, Lu W, Li J (2013) A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission. Sci Hortic 150:244–250

    Article  CAS  Google Scholar 

  • Pimentel D (1997) Techniques for reducing pesticide use: economic and environmental benefits. Wiley, New York

    Google Scholar 

  • Pirrello J, Bourdon M, Cheniclet C, Bourge M, Brown SC, Renaudin JP, Frangne N, Chevalier C (2014) How fruit developmental biology makes use of flow cytometry approaches. Cytometry A 85:115–125

    Article  PubMed  CAS  Google Scholar 

  • Pivovaro SZ (1974) MSc thesis, Hebrew University of Rehovat, pp 139

    Google Scholar 

  • Prakash A, Manley J, Decosta S, Caporaso F, Foley D (2002) The effects of gamma irradiation on the microbiological physical and sensory qualities of diced tomatoes. Radiat Phys Chem 63:387–390

    Article  CAS  Google Scholar 

  • Puchooa D (2004a) In vitro regeneration of lychee (Litchi chinensis Sonn). Afr J Biotechnol 3:576–584

    Google Scholar 

  • Puchooa D (2004b) Expression of green fluorescent protein gene in litchi (Litchi chinensis Sonn) tissues. J Appl Hortic 6:11–15

    CAS  Google Scholar 

  • Punumong P, Sangsuwan J, Kim SM, Rattanapanone N (2016) Combined effect of calcium chloride and modified atmosphere packaging on texture and quality of minimally-processed Litchi fruit. Chiang Mai J Sci 43:556–569

    Google Scholar 

  • Qiu S, Wang Y, Zhou R, Yin A, Zhou T (2015) Optimization of cultural conditions for vinegar of Litchi (Litchi chinensis Sonn) in liquid state fermentation. J Food Nutr Res 3:641–647

    Google Scholar 

  • Raharjo SHT, Litz RE (2007) Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn) from leaves of mature phase trees. Plant Cell Tissue Org Cult 89:113–119

    Article  Google Scholar 

  • Rahim MA, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913–929

    Article  CAS  PubMed  Google Scholar 

  • Ramesh MN, Wolf W, Tevini D, Bognar A (2002) Microwave blanching of vegetables. J Food Sci 67:390–398

    Article  CAS  Google Scholar 

  • Robbertse H, Fivaz J, Menzel C (1995) A reevaluation of tree model inflorescence morphology and sex ratio in lychee (Litchi chinensis Sonn). J Am Soc Hortic Sci 120:914–920

    Google Scholar 

  • Rodov V (2007) Biotechnological approaches to improving quality and safety of fresh-cut fruit and vegetable products. Acta Hortic 746:181–194

    Article  CAS  Google Scholar 

  • Sajilata MG, Singhal RS (2006) Effect of irradiation and storage on the antioxidative activity of cashew nuts. Radiat Phys Chem 75:297–300

    Article  CAS  Google Scholar 

  • Sarin NB, Prasad US (2003) In vitro regeneration and transformation of litchi (Litchi chinensis Sonn). In: PK Jaiwal, RP Singh (eds), Plant genetic engineering improvement of fruits, vol 6. Sci Tech Publishing LLC, 211–222

    Google Scholar 

  • Sarni-Manchado P, Roux EL, Guerneve CL, Lozano Y, Cheynier V (2000) Phenolic composition of litchi fruit pericarp. J Agric Food Chem 48:5995–6002

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HM, Palekaer MP, Maxim JE, Castillo A (2006) Improving the microbiological quality and safety of fresh-cut tomatoes by low-dose electron beam irradiation. J Food Prot 69:575–581

    Article  PubMed  Google Scholar 

  • Shao W, Lai ZX, Huang Q, Guo YQ (2010) Changes of apx isozymes under high-temperature stress and cloning of an APX functional fragment in embryogenic callus of litchi. Acta Hortic 863:183–188

    Article  CAS  Google Scholar 

  • Singh SN, Singh SP (1952) Studies on the storage and longevity of some fruits and vegetables. J Agric Animal Husbandry 2:3–11

    Google Scholar 

  • Singh LB, Singh UP (1964) The Litchi Supdt Printing and Stationary, Uttar Pradesh, Allahabad

    Google Scholar 

  • Singh A, Pandey SD, Vishal N (2012) The world Litchi cultivars technical bulletin 007, NRC for Litchi Mushahari, Muzaffarpur, pp 1–65

    Google Scholar 

  • Sivakumar D, Korsten L (2006) Influence of modified atmosphere packaging and postharvest treatments on quality retention of litchi cv Mauritius. Postharvest Biol Technol 41:135–142

    Article  CAS  Google Scholar 

  • Song HP, Byun MW, Jo C, Lee CH, Kim KS, Kim DH (2007) Effects of gamma irradiation on the microbiological nutritional and sensory properties of fresh vegetable juice. Food Control 18:5–10

    Article  CAS  Google Scholar 

  • Stern RA, Gazit S (1996) Lychee pollination by the honeybee. J Am Soc Hortic Sci 120:152–157

    Google Scholar 

  • Stern RA, Gazit S (1998) Pollen viability in lychee. J Am Soc Hortic Sci 123:41–46

    Google Scholar 

  • Stern RA, Eisenstein D, Voet H, Gazit S (1996) Anatomical structure of two day old litchi ovules in relation to fruit set and yield. J Hortic Sci 71:661–671

    Article  Google Scholar 

  • Su D, Ti H, Zhang R, Zhang M, Wei Z, Deng Y, Guo J (2014) Structural elucidation and cellular anti-oxidant activity evaluation of major anti-oxidant phenolics in lychee pulp. Food Chem 158:385–391

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Jiang Y, Shi J, Wei X, Xue SJ, Shi J, Yi C (2010) Anti-oxidant activities and contents of polyphenol oxidase substrates from pericarp tissues of litchi fruit. Food Chem 119:753–757

    Article  CAS  Google Scholar 

  • Sung YY, Yang WK, Kim HK (2012) Antiplatelet anticoagulant and fibrinolytic effects of Litchi chinensis Sonn Extract. Mol Med Rep 5:721–724

    CAS  PubMed  Google Scholar 

  • Syamal MM, Mishra KA (1984) Litchi cultivation in India. Farmer Parliament 15–16:27–28

    Google Scholar 

  • Takos AM, Robinson SP, Walker AR (2006) Transcriptional regulation of the flavonoid pathway in the skin of dark-grown ‘Cripps’ Red’ apples in response to sunlight. J Hortic Sci Biotechnol 81:735–744

    Article  CAS  Google Scholar 

  • Thapa N, Bhowmick DK, Ghosh SK, Deb P (2014) Performance of Litchi (Litchi chinensis Sonn) 2014 Cultivars in Non-bearing Stage under Terai Region of West Bengal. Int J Agric Food Sci Technol 5:531–536

    Google Scholar 

  • Thompson AK (2003) Postharvest technology of fruits and vegetables. In: Thompson (ed) Fruit and vegetables: harvesting handling and storage. Blackwell Publishing Ltd, Oxford, pp 253–255

    Chapter  Google Scholar 

  • Tongpamnak P, Patanatara A, Srinives P, Babprasert C (2002) Determination of genetic diversity and relationships among Thai litchi accessions by RAPD and AFLP markers Kasetstart. J Nat Sci 36:370–380

    CAS  Google Scholar 

  • Variyar PS, Limaye A, Sharma A (2004) Radiation-induced enhancement of anti-oxidant contents of soybean (Glycine max Merrill). J Agric Food Chem 52:3385–3388

    Article  CAS  PubMed  Google Scholar 

  • Viruel MA, Hormaza JI (2004) Development characterization and variability analysis of microsatellites in lychee. Theor Appl Genet 108:896–902

    Article  CAS  PubMed  Google Scholar 

  • Vishwanathan KH, Girish KG, Umesh H (2013) Infrared assisted dry-blanching and hybrid drying of carrot. Food Bioprod Process 91:89–94

    Article  CAS  Google Scholar 

  • Wang JF, Wang ZQ (2010a) Studies on in vitro germplasm conservation of litchi. Acta Hortic 863:111–116

    Article  CAS  Google Scholar 

  • Wang ZQ, Wang JF (2010b) Genetic evaluations of in vitro conserved embryogenic calli of litchi. Acta Hortic 863:149–154

    Article  CAS  Google Scholar 

  • Wang X, Wei Y, Yuan S, Liu G, Zhang YL, Wang W (2006a) Potential anti-cancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett 239:144–150

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yuan S, Wang J (2006b) Anti-cancer activity of Litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol Appl Pharmacol 215:168–178

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xiao L, Pan J (2007) Experimental studies of effects of anti-tumor of Litchi seed Ke Li and the activity of in the tissue-end of EAC S180 and hepatic carcinoma of rats. China Healthcare Innovation 2:54–56

    Google Scholar 

  • Wang G, Li HL, Wang JB (2013) Primary study on the callus induction from anther of two litchi (Litchi chinensis Sonn) cultivars. Chin J Tropical Crops 34:669–674

    Google Scholar 

  • Wang J, Liu B, Xiao Q, Li H, Sun J (2014) Cloning and expression analysis of Litchi (Litchi chinensis Sonn) polyphenol oxidase gene and relationship with postharvest pericarp browning. PLoS One 9:e93982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang B, Tan HW, Fang W, Meinhardt LW, Mischke S, Matsumoto T, Zhang D (2015a) Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm. Horm Res 2:14065

    Article  CAS  Google Scholar 

  • Wang TD, Zhang HF, Wu ZC, Li JG, Huang XM, Wang HC (2015b) Sugar uptake in the Aril of litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4. Plant Cell Physiol 56:377–387

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li H, Wang S, Sun J, Zhang X, Wang J (2016) In vitro regeneration of Feizixiao litchi (Litchi chinensis Sonn). Afr J Biotechnol 15:1026–1034

    Article  Google Scholar 

  • Weberling F (1992) Morphology of flowering plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Wen LR, Yang B, Cui C, You LJ, Zhao MM (2012) Ultrasound-assisted extraction of phenolics from longan (Dimocarpus longan Lour) fruit seed with artificial neural network and their antioxidant activity. Food Anal Methods 5:1244–1251

    Article  Google Scholar 

  • Wen L, Wu D, Jiang Y (2014) Identification of flavonoids in Litchi (Litchi chinensis Sonn) leaf and evaluation of anti-cancer activities. J Funct Foods 6:555–563

    Article  CAS  Google Scholar 

  • Wolf LM (1987) In Vitro propagation of Lychee (Litchi chinensis). Honours Thesis, University of Queensland, Brisbane, Australia, 40 pp

    Google Scholar 

  • Wong WS, Li GG, Ning W, Xu ZF, Hsaio WLW, Zhang LY, Li N (2001) Repression of chilling induced ACC accumulation in transgenic citrus by overproduction of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci 161:969–977

    Article  CAS  Google Scholar 

  • Wu SX (1998) Encyclopedia of China fruits: litchi. China Forestry Press, Beijing

    Google Scholar 

  • Wu JY, Li CQ, Lu WJ, Li JG (2013) Cloning of Lc-ACO1 and its expression related to fruitlet abscission in litchi. J Fruit Sci 30:207–213

    CAS  Google Scholar 

  • Xie YM, Yi GJ, Zhang QM, Zeng JW (2006) Somatic embryogenesis and plantlet regeneration from anther of Feizixiao litchi. Chin J Tropical Crops 27:68–72

    Google Scholar 

  • Xiong AH, Shen WJ, Xiao LY (2008) Effect of semen Litchi containing serum on proliferation and apoptosis of HepG2 cells. J Chin Med Mater 31:1533–1536

    Google Scholar 

  • Xu SS, Lai ZX (2013) Induction and maintenance of the embryogenic callus in anther of some ancient litchi tree in Fuzhou City. Subtropical Agric Res 9:123–126

    Google Scholar 

  • Xu X, Xie H, Hao J (2010a) Eudesmane sesquiterpene glucosides from Lychee seed and their cytotoxic activity. Food Chem 123:1123–1126

    Article  CAS  Google Scholar 

  • Xu X, Xie H, Wang Y, Wei X (2010b) A-type proanthocyanidins from Lychee seeds and their anti-oxidant and anti-viral activities. J Agric Food Chem 58:1667–11672

    Google Scholar 

  • Yang B, Wang J, Zhao M, Liu Y, Wang W, Jiang Y (2006) Identification of polysaccharides from pericarp tissues of litchi (Litchi chinensis Sonn) fruit in relation to their anti-oxidant activities. Carbohydr Res 341:634–638

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Zhao MM, Shi J, Jiang YM, Yang N (2008) Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem 106:685–690

    Article  CAS  Google Scholar 

  • Yang B, Jiang YM, Shi J, Chen F, Ashraf M (2011) Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour) fruit – a review. Food Res Int 44:1837–1842

    Article  CAS  Google Scholar 

  • Yang Z, Wang T, Wang H, Huang X, Qin Y, Hu G (2013) Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis Sonn. J Plant physiol 170:731–740

    Google Scholar 

  • Yoruk R, Balaban MO, Marshall MR, Yoruk S (2002) The inhibitory effect of oxalic acid on browning of banana slices (30G-18). In: Annual meeting and food expo Anaheim CA

    Google Scholar 

  • Yu YB (1991) Study on some factors in tissue culture of lychee (Litchi chinensis). Fujian Agric Sci Technol 5:17–18

    Google Scholar 

  • Yu CH, Chen ZG (1997) Induction of litchi embryogenic calli by immature embryos and anthers culture in vitro. J Fujian Agric Uni 26:168–172

    Google Scholar 

  • Yu CH, Chen ZG (1998) Embryogenic suspension culture and protoplast isolation in litchee. Chin J Tropical Crops 19:16–20

    Google Scholar 

  • Yu C, Chen Z, Lu L, Lin J (2000) Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspensions. Plant Cell Tissue Org Cult 61:51–58

    Article  CAS  Google Scholar 

  • Yuan R, Huang H (1998) Litchi fruit abscission: its patterns effect of shading and relation to endogenous abscisic acid. Sci Hortic 36:281–292

    Article  Google Scholar 

  • Zhang N, Zhou Z, Feng X (2012) Comparison and elevation on anti-tumor activity in vitro of the Litchi seeds and Longan seeds water extract hunan. J Tradit Chin Med 28:133–135

    CAS  Google Scholar 

  • Zhang R, Zeng Q, Deng Y, Zhang M, Wei Z, Zhang Y, Tang X (2013) Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem 136:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Zhao MM, Yang B, Wang JS, Li BZ, Jiang YM (2006) Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their anti-oxidant activities. Food Chem 98:539–544

    Article  CAS  Google Scholar 

  • Zhao M, Yang B, Wang J, Liu Y, Yu L, Jiang Y (2007) Immunomodulatory and anti-cancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn) pericarp. Int Immunopharmacol 7:162–166

    Article  CAS  PubMed  Google Scholar 

  • Zhao YH, Hu YL, Guo YS, Zhou J, Fu JX, Liu CM, Zhu J, Zhang MJ, Huang SS (2010) The creation and molecular identification of intergeneric hybrids between litchi and longan. Acta Hortic 863:129–134

    Article  CAS  Google Scholar 

  • Zheng X, Tian S (2006) Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chem 96:519–523

    Article  CAS  Google Scholar 

  • Zhou LN, Kuang ZS, Ma XJ, Chen JQ, Cao J (1996) The study of factors affecting somatic embryogenesis in young embryo culture of Litchi chinensis. J Agric Biotechnol 4:161–165

    Google Scholar 

  • Zhou H, Lin Y, Li Y, Li M, Wei S, Chai W, Tam NF (2011) Anti-oxidant properties of polymeric proanthocyanidins from fruit stones and pericarps of Litchi chinensis Sonn. Food Res Int 44:613–620

    Article  CAS  Google Scholar 

  • Zhou Y, Wang H, Yang R, Huang H, Sun Y, Shen Y, Lei H, Gao H (2012) Effects of Litchi chinensis fruit isolates on prostaglandin E2 and nitric oxide production in J774 murine macrophage cells. BMC Complement Altern Med 12:1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. K. Satyamoorthy, Director, School of Life Sciences, Manipal University for his constant encouragement, critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamalai Muthusamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Muthusamy, A., Swathy, P.S., Kiran, K.R. (2017). Biotechnological Interventions in Litchi (Litchi chinensis Sonn.) for the Improvement of Fruit Quality and Postharvest Storage. In: Kumar, M., Kumar, V., Prasad, R., Varma, A. (eds) The Lychee Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3644-6_4

Download citation

Publish with us

Policies and ethics