Skip to main content

Operational Transconductance Amplifier-based Sinusoidal Oscillator with Grounded Capacitors

  • Conference paper
  • First Online:
Book cover Proceedings of the International Conference on Nano-electronics, Circuits & Communication Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 403))

Abstract

A sinusoidal oscillator using two capacitors and three operational transconductance amplifiers (OTAs) is presented. Taking the aid of single-ended OTA, the current-mode sinusoidal oscillator circuit in parts a simple circuitry, that has been stated to be highly suitable for implementation of integrated circuit which in turn use grounded capacitors. The condition of oscillation (CO) and frequency of oscillation (FO) of the same circuit can be set orthogonally. The sinusoidal oscillator is mainly implemented in communication systems, instrumentation programs, measurement devices, and signal processing. The mathematical derivations thus obtained in the circuit can be verified with cadence using model parameters of 180 nm technology process. However, the results arrived have demonstrated excellent agreement with the theoretical values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linares-Barranco B, Rodriguez-Vazquez A, Sancnez E, Jose LH (1991) CMOS OTA-C high-frequency sinusoidal oscillators. IEEE J Solid-State Circuits 26(2):160–165

    Article  Google Scholar 

  2. Summart S, Thongsopa C, Jaikla W (2012) OTA based current-mode sinusoidal quadrature oscillator with non-interactive control. Przeglad Elektrotechniczny (Electr. Review), pp 14–17. ISSN 0033-2097, R. 88 NR 7a/2012

    Google Scholar 

  3. Toumazou C, Lidgay FJ (1986) Universal active filter using current conveyors. Electron Lett 22:662–664

    Article  Google Scholar 

  4. Abuelma’atti MT, Al-zaher HA (1999) Current-mode sinusoidal oscillators using single FTFN. IEEE Trans Circuits Systems-II: Analog Digital Signal Proc 46:69–74

    Google Scholar 

  5. Jaikla W, Lahiori A (2012) Resistor-less current-mode four-phase quadrature oscillator using CCCDTA and grounded capacitors. Int J Elec Commun 66:214–218

    Google Scholar 

  6. Jaikla W, Prommee P (2011) Electronically tunable current-mode multiphase sinusoidal oscillator employing CCCDTA-based allpass filters with only grounded passive elements. Radioeng J 30:594–599

    Google Scholar 

  7. Abuelma’atti MT (1990) Anew minimum component active-c OTA-based linear voltage (current)-controlled sinusoidal oscillator. IEEE Trans Instr Meas 39:795–797

    Google Scholar 

  8. Linares-Barranco B, Serrano-Gotarrendona T, Ramos-Martos J, Ceballos-Caceres J, Linares-Barranco A (2004) A precise 90 quadrature OTA-C oscillator tunable in the 50–130 MHz range. IEEE Trans Circuits Syst 51:649–663

    Article  Google Scholar 

  9. Odame KM, Hasler P (2007) An efficient oscillator design based on OTA nonlinearity. In: Proceedings of IEEE International Symposium on Circuits and Systems-07 (IEEE ISCAS-07), pp 921–924

    Google Scholar 

  10. Pranayanuntana P (2009) An electronically adjustable amplitude of OTA-C based sinusoidal nonlinear oscillator. In: Proceedings of IEEE International Conference on Digital Image Processing, pp 335–340

    Google Scholar 

  11. Das BP, Watson N, Liu YH (2010) Bipolar OTA based voltage controlled sinusoidal oscillator. In: Proceedings of international conference on circuits, systems and signals, pp 101–105

    Google Scholar 

  12. Abuelma’atti MT, Almaskati RH (1998) Digitally programmable active-c OTA-based oscillator. IEEE Trans Instr Meas 37:320–322

    Google Scholar 

  13. Prommee P, Angkeaw K, Chanwutitum J, Dejhan K (2007) Dual input all-pass networks using MO-OTA and its application. In: Proceedings of ECTI International Conference, pp 129–132

    Google Scholar 

  14. Nacaroblu A, Ercelebi E (1998) Effects of parasitic elements on oscillation frequency. Turk J Elec Eng 7:39–44

    Google Scholar 

  15. Sotner R, Jerabek J, Petrzela L, Dostal T, Vrba K (2009) Electronically tunable simple oscillator based on single-output and multiple-output transconductor. IEICE Elec Exp 6:1476–1482

    Article  Google Scholar 

  16. Bhasker DR, Abdulla KK, Senani R (2011) Electronically-controlled current-mode second order sinusoidal oscillators using MO-OTAs and grounded capacitors. Circuits Syst 2:65–73

    Article  Google Scholar 

  17. Singh V (2006) Equivalent forms of duel-OTA RC oscillators. IEEE Proc Circuits Dev Syst 153:95–99

    Article  Google Scholar 

  18. Linares-Barranco B, Rodriguez-Vazquez A, Huertas JL, Sanchez-Sinencio E, Hoyle JJ (1988) Generation and design of sinusoidal oscillators using OTAs. In: IEEE International Symposium on Circuits and Systems, pp 2863–2866, 1988

    Google Scholar 

  19. Bhasker DR, Tripati MP, Senani Raj (1993) A class of three-OTA-two capacitor oscillators with non-interacting controls. Int J Elec 74(3):459–463. doi:10.1080/00207219308925849

    Article  Google Scholar 

  20. Thosdeekoraphat T, Summart S, Thongsopa C (2013) Current-mode sinusoidal oscillator using single dual-output current controlled current conveyor transconductance amplifier. Aust J Basic Appl Sci 7(8):230–236

    Google Scholar 

  21. Kumngern M, Junnapiya S (2012) Tunable quadrature Sinusoidal oscillator using single-ended OTA’s. In: Proceedings of the 4th IEEE International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN- 2012), 24–26 July 2012, Phuket, pp 74–77

    Google Scholar 

  22. Sedra AS, Smith KC (1998) Microelectronic circuits. Oxford University Press, 4th ed, pp 1002–1005

    Google Scholar 

  23. Srinivasulu Avireni (2011) A novel current conveyor based Schmitt trigger and its application as a relaxation oscillator. Int J Circuit Theory Appl 39(6):679–686. doi:10.1002/cta.669

    Article  Google Scholar 

  24. Srinivasulu A (2012) Current conveyor based relaxation oscillator with tunable grounded resistor/capacitor. Int J Des Anal Tools Circuits Syst (Hong-Kong) 3(2):1–7, Nov 2012. ISSN: 2071-2987

    Google Scholar 

  25. Khan AA, Bimal S, Dey KK, Roy SS (2005) Novel RC sinusoidal oscillator using second-generation current conveyor. IEEE Trans Instrum Meas 54(6):2402–2406

    Article  Google Scholar 

  26. Srinivasulu A (2009) Current conveyor-based square-wave generator with tunable grounded resistor/capacitor. In: Proceedings of IEEE Applied Electronics 2009 International Conference, Pilsen, Czech Republic, 9–10 Sept 2009, pp 233–236. ISSN: 1803-7232. INSPEC Accession No: 10975061

    Google Scholar 

  27. Pal D, Srinivasulu A, Pal BB, Demosthenous A, Das BN (2009) Current conveyor based square/triangular-waveform generators with improved linearity. IEEE Trans Instrum Meas 58(7):174–2180, Jul 2009. doi:10.1109/TIM.2008.2006729

  28. Cicekoglu MO, Kuntman H (1998) On the design of CCII + based relaxation oscillator employing single grounded passive element for linear period control. Microelectron J 29:983–989

    Article  Google Scholar 

  29. Pal D, Srinivasulu A, Goswami M (2009) Novel current-mode waveform generator with independent frequency and amplitude control. In: Proceedings of IEEE International Symposium on Circuits and Systems-09, Taipei, Taiwan, pp 2946–2949, 24–27 May 2009. doi:10.1109/ISCAS.2009.5118420

  30. Abuelma’atti MT, Al-Absi MA (2005) A current conveyor-based relaxation oscillator as a versatile interface for capacitive and resistive sensors. Int J Electron 92(8):473–477, Aug. 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasulu Avireni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Avireni, S., Sowjanya, G., Gautham, S.H., Telagathoti, P., Krishna V, V.S.V. (2017). Operational Transconductance Amplifier-based Sinusoidal Oscillator with Grounded Capacitors. In: Nath, V. (eds) Proceedings of the International Conference on Nano-electronics, Circuits & Communication Systems. Lecture Notes in Electrical Engineering, vol 403. Springer, Singapore. https://doi.org/10.1007/978-981-10-2999-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2999-8_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2998-1

  • Online ISBN: 978-981-10-2999-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics