Skip to main content

Halophilic Bacteria: Potential Bioinoculants for Sustainable Agriculture and Environment Management Under Salt Stress

  • Chapter
  • First Online:
Plant-Microbe Interaction: An Approach to Sustainable Agriculture

Abstract

Salinity is one of the most critical environmental constraints which cause soil degradation and hampering agricultural production throughout the world. In the present time, a total 831 million hectares of land is affected by salinity. The salinity affects the processes in plant life from its germination to maturation stage. Regulation of phytohormones, root/shoot development, nutrient uptake, and photosynthesis are severely affected by salt stress and ultimately reduce agricultural productions. The loss of agriculture production due to salinization is one of the major constraints to feed to the growing population. High salt levels in the soil limit its agroecological potential and represent a considerable ecological and socioeconomic threat to sustainable development. In this context, the use of halophilic bacteria has been gained a great interest in eco-friendly and sustainable agriculture approach with emphasis on plant growth promotion in salt stress. This chapter paid attention to the use of halophilic bacteria in agriculture system toward producing salt stress-tolerant crops and an understanding the mechanisms of plant and halophilic bacterial interaction. Halophilic bacteria help plants to cope with salinity by supporting them in the restoration of essential activities such as nutrient uptake efficiency, ROS scavenging, and phytohormone production. The second part of this chapter describes different enzymatic potentials of halophilic bacteria and their uses in food processing, industrial bioconversions, and bioremediation. After that, a brief outline of characterization of halophilic bacteria by phenotypic, biochemical, chemotaxonomy, and molecular methods is discussed. The exploitation of halophilic bacteria in agriculture is required for environment and human welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamir M, Aslam A, Khan MY et al (2013) Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agric Biol 1:17–22

    Google Scholar 

  • Abdeljabbar H, Cayol JL, Hania WB, Boudabous A, Sadfi N, Fardeau ML (2013) Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha. Int J Syst Evol Microbiol 63(6):2069–2074

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA (2014) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interact 9(1):460–467

    Article  CAS  Google Scholar 

  • Ahn J, Park JW, McConnell JA, Ahn YB, Häggblom MM (2011) Kangiella spongicola sp. nov., a halophilic marine bacterium isolated from the sponge Chondrilla nucula. Int J Syst Evol Microbiol 61(4):961–964

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh O, Parsaeimehr A (2011) The influence of plant growth promoting rhizobacteria (PGPR) on the reduction of abiotic stresses in crops. Extrem Life Biospeol Astrol 3:93–99

    Google Scholar 

  • Aljohny BO (2015) Halophilic bacterium – a review of new studies. Biosci Biotechnol Res Asia 12(3):2061–2069

    Article  Google Scholar 

  • Amoozegar MA, Malekzadeh F, Malik KA (2003). Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52(3):353–359

    Google Scholar 

  • Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA‐2. J Basic Microbiol 48(3):160–167

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Makhdoumi-Kakhki A, Ramezani M, Nikou MM, Fazeli SAS, Schumann P, Ventosa A (2013a) Limimonas halophila gen. nov., sp. nov., an extremely halophilic bacterium in the family Rhodospirillaceae. Int J Syst Evol Microbiol 63(4):1562–1567

    Article  PubMed  Google Scholar 

  • Amoozegar MA, Bagheri M, Didari M, Fazeli SAS, Schumann P, Sánchez-Porro C, Ventosa A (2013b) Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 63(1):345–351

    Article  PubMed  Google Scholar 

  • Amoozegar MA, Bagheri M, Makhdoumi-Kakhki A, Didari M, Schumann P, Nikou MM, Sánchez- Porro C, Ventosa A (2014) Aliicoccus persicus gen. nov., sp. nov., a halophilic member of the Firmicutes isolated from a hypersaline lake. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.058545-0

    Google Scholar 

  • Babu J, Pramod WR, George T (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  Google Scholar 

  • Baldani JL, Reis VM, Baldani VLD, Dobereiner J (2000) A brief story of nitrogen fixation in sugarcane – reasons for success in Brazil. Funct Plant Biol 29:417–423

    Article  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays L. following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2009) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Barr JG, Emmerson AM, Hogg GM, Smyth E (1989) API-20NE and sensititre autoidentification systems for identifying Pseudomonas spp. J Clin Pathol 42:1113–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000) Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2:333–342

    Article  CAS  PubMed  Google Scholar 

  • Bhat M (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Bhat M, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  PubMed  Google Scholar 

  • Blum JS, Kulp TR, Han S, Lanoil B, Saltikov CW, Stolz JF, Miller LG, Oremland RS (2012) Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate-and arsenate- respiring bacterium from Searles Lake, California. Extremophiles 16(5):727–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25

    Article  Google Scholar 

  • Cardinale M, Ratering S, Suarez C, Montoya AMZ, Geissler-Plaum R, Schnell S (2014) Modulation rhizosphere microbiota to mitigate salt stress of barley plants. In: Microbial ecology and application of inoculants in biocontrol – Indo-German Workshop. Book of Abstracts, IARI, New Delhi, pp 35–37

    Google Scholar 

  • Carro L, Spröer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35(2):73–80

    Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by salt-tolerant bacterium. Recent Res Sci Technol 3:67–70

    Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q (2007) The ribosomal database project (RDP-II): introducing my RDP space and quality controlled public data. Nucleic Acids Res 35(SI):D169–D172

    Google Scholar 

  • Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000a) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183(1):67–71

    CAS  PubMed  Google Scholar 

  • Coronado MJ, Vargas C, Mellado E, Tegos G, Drainas C, Nieto J, Ventosa A (2000b) The α-amylase gene amyH of the moderate halophile Halomonas meridiana : cloning and molecular characterization. Microbiology 146(4):861–868

    Article  CAS  PubMed  Google Scholar 

  • CSSRI (Central Soil Salinity Research Institute) (2012) Computerized database on salt effected soils in India. Indian Council of Agricultural Research, Ministry of Agriculture, Government of India, New Delhi

    Google Scholar 

  • Cui HL, Yang X, Zhou YG, Liu HC, Zhou PJ, Dyall-Smith ML (2012) Halobellus limi sp. nov. and Halobellus salinus sp. nov., isolated from two marine solar salterns. Int J Syst Evol Microbiol 62(6):1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Daneshmand F, Mohammad JA, Khosrow MK (2009) Effect of acetylsalicylic acid (Aspirin) on salt and osmotic stress tolerance in Solanum bulbocastanum in vitro: enzymatic antioxidants. Am Eurasian J Agric Environ Sci 6:92–99

    CAS  Google Scholar 

  • Dardanelli MS, Fernández de Córdoba FJ, Rosario Espuny M, Rodríguez Carvajal MA, Soria Díaz ME, et al (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Google Scholar 

  • Das S, De M, Ray R, Ganguly D, Jana TK, De TK (2011) Salt tolerant culturable microbes accessible in the soil of the Sundarbans mangrove forest, India. Open J Ecol 1:35–40

    Article  Google Scholar 

  • Davis PJ (2004) Nature, occurrence and functions. In: Davis PJ (ed) Plant hormones biosynthesis, signal transduction, action, vol 1. Kluwer, Dordrecht, pp 1–15

    Google Scholar 

  • de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2009) Bergey’s manual of systematic bacteriology, vol 3: The Firmicutes, 2nd edn. XXVI, 1450 p. 393

    Google Scholar 

  • Del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55(2):71–81

    Article  PubMed  Google Scholar 

  • Diby P, Sarma YR, Srinivasan V, Anandaraj M (2005) Pseudomonas fluorescense mediated vigour in black pepper (Piper nigrum L.) under green house cultivation. Ann Microbiol 55(3):171–174

    Google Scholar 

  • Dodd IC (2009) Rhizosphere manipulations tomaximize ‘crop per drop’ during deficit irrigation. J Exp Bot 60(9):2454–2459

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 8:1–14

    Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161(6):345–360

    Article  PubMed  CAS  Google Scholar 

  • Echigo A, Minegishi H, Shimane Y, Kamekura M, Usami R (2012) Natribacillus halophilus gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 62(2):289–294

    Article  CAS  PubMed  Google Scholar 

  • Echigo A, Minegishi H, Shimane Y, Kamekura M, Itoh T, Usami R (2013) Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 63(10):3556–3562

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth S (2013) Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 291–303

    Google Scholar 

  • Egamberdiyeva D (2005) Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in szernozem soil, semi-arid region of Uzbekistan. Sci World J 5:501–509

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2):184–189

    Article  Google Scholar 

  • Essghaier B, Hedi A, Bejji M, Jijakli H, Boudabous A, Sadfi -Zouaoui N (2012) Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23. Ann Microbiol 62:835–841

    Google Scholar 

  • Fang C, Radosevich M, Fuhrmann JJ (2001) Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses. Soil Biol Biochem 33(4):679–682

    Article  CAS  Google Scholar 

  • Food and Agricultural Organization (2015) Land and plant nutrition management service. Available from: www.fao.org/ag/agl/agll/spush/.pdf

  • Gales G, Chehider N, Joulian C, Battaglia-Brunet F, Cayol JL, Postec A, Borgomano J, Neria- Gonzalez I, Lomans B, Ollivier B (2011) Characterization of Halanaerocella petrolearia gen. nov., sp. nov., a new anaerobic moderately halophilic fermentative bacterium isolated from a deep subsurface hypersaline oil reservoir. Extremophiles 15(5):565–571

    Google Scholar 

  • Gao Z, Ruan L, Chen X, Zhang Y, Xu X (2010) A novel salt-tolerant endo-β-1, 4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol 87(4):1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source-utilization. Appl Environ Microbiol 57:2351–2359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giridhar PV, Chandra T (2010) Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem 45(10):1730–1737

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Hanelt I, Muller V (2013) Molecular mechanisms of adaptation of the moderately halophilic bacterium Halobacillus halophilus to its environment. Life 3:234–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Heidari M, Mosavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN J Agric Biol Sci 6:6–11

    Google Scholar 

  • Heritage J, Evans EGV, Killington RA (1996) Introductory microbiology. Cambridge University Press, England, 234 p

    Book  Google Scholar 

  • Huang X, Shao Z, Hong Y, Lin L, Li C, Huang F, Wang H, Liu Z (2010) Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66-4: molecular cloning, heterogonous expression, and biochemical characterization. J Microbiol 48(3):318–324

    Article  CAS  PubMed  Google Scholar 

  • Hussain MI, Asghar HN, Arshad M, Shahbaz M (2013) Screening of multi-traits rhizobacteria to improve maize growth under axenic conditions. J Anim Plant Sci 23:514–520

    CAS  Google Scholar 

  • Ibekwe AM, Kennedy AC (1998) Phospholipid fatty acid profiles and carbon utilization pattern for analysis of microbial community structure under field and green house conditions. FEMS Microbiol Ecol 26:151–163

    Article  CAS  Google Scholar 

  • Ishikawa M, Yamasato K, Kodama K, Yasuda H, Matsuyama M, Okamoto-Kainuma A, Koizumi Y (2013) Alkalibacterium gilvum sp. nov., slightly halophilic and alkaliphilic lactic acid bacterium isolated from soft and semi-hard cheeses. Int J Syst Evol Microbiol 63(4):1471–1478

    Article  CAS  PubMed  Google Scholar 

  • Jacques MA, Durand K, Orgeur G, Balidas S, Fricot C, Bonneau S, Quillévéré A, Audusseau C, Olivier V, Grimault V, Mathis R (2012) Phylogenetic analysis and polyphasic characterization of Clavibacter michiganensis strains isolated from tomato seeds reveal that nonpathogenic strains are distinct from C. michiganensis subsp. michiganensis. Appl Environ Microbiol 78(23):8388–8402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agric Res 73:213–219

    Article  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are source of new halotolerant diazotrophic bacteria with plant growth promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jha M, Chourasia S, Sinha S (2013) Microbial consortium for sustainable rice production. Agroecol Sustain Food Syst 37(3):340–362

    Article  Google Scholar 

  • Jiang F, Cao S-J, Li ZH, Fan H, Li HF, Liu WJ, Yuan HL (2011) Salisediminibacterium halotolerans gen. nov., sp. nov., a halophilic bacterium isolated from Xiarinaoer soda lake sediment in Inner Mongolia, China. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.034488-034480

  • Joshi RH, Dodia MS, Singh SP (2008) Optimization of culture parameters for production of commercially valuable alkaline protease from a haloalkaliphilic bacterium isolated from sea water. Biotechnol Bioprocess Eng 13:552–559

    Article  CAS  Google Scholar 

  • Kadziola A, Søgaard M, Svensson B, Haser R (1998) Molecular structure of a barley α-amylase- inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M (1986) Production and function of enzymes of eubacterial halophiles. FEMS Microbiol Rev 2(1–2):145–150

    Article  Google Scholar 

  • Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK (2012) Halophiles – taxonomy, diversity, physiology and applications. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, Dordrecht, pp 1–34

    Chapter  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  CAS  PubMed  Google Scholar 

  • Karan R, Singh S, Kapoor S, Khare S (2011) A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. New Biotechnol 28:136–145

    Article  CAS  Google Scholar 

  • Karnchanatat A, Petsom A, Sangvanich P, Piapukiew J, Whalley AJ, Reynolds CD, Gadd GM, Sihanonth P (2008) A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. Enzym Microb Technol 42:404–413

    Article  CAS  Google Scholar 

  • Kim JM, Lee SH, Jung JY, Jeon CO (2010) Marinobacterium lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 60(8):1828–1831

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp EJ01 in tomato and Arabidopsis is accompanied by Up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilization and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304

    Article  Google Scholar 

  • Kohler J, Caravaca F, Alguacil MM, Roldan A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41:1710–1716

    Article  CAS  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in Soybean (Glycine max L. Merrill). J Plant Growth Regul 34(3):558–573

    Article  CAS  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016) Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J Microbiol Biotechnol 32(1):1–10

    Article  CAS  Google Scholar 

  • Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst 4(1):1

    Article  CAS  Google Scholar 

  • Kushner D (1993) Growth and nutrition of halophilic bacteria. In: Russell HV, Hechstein LI (eds) The biology of halophilic bacteria, vol 1. CRC Press, Boca Raton, pp 87–103

    Google Scholar 

  • Lamosa P, Turner DL, Ventura R, Maycock C, Santos H (2003) Protein stabilization by compatible solutes. Eur J Biochem 270(23):4606–4614

    Article  CAS  PubMed  Google Scholar 

  • Larsen H (1986) FEMS Microbiol Rev 39:3–7

    Article  CAS  Google Scholar 

  • León MJ, Fernández AB, Ghai R, Sánchez-Porro C, Rodriguez-Valera F, Ventosa A (2014) From metagenomics to pure culture: isolation and characterization of the moderately Halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl Environ Microbiol 80(13):3850–3857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Yu HY, Lin YF (2012) Purification and characterization of an extracellular esterase from a moderately halophilic bacterium, Halobacillus sp. strain LY 5. Afr J Biotechnol 11:6327–6334

    CAS  Google Scholar 

  • Liu W, Yang SS (2014) Oceanobacillus aidingensis sp. nov., a moderately halophilic bacterium. Antonie Van Leeuwenhoek 105(5):801–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan NA, Berkeley RCW (1984) Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882

    CAS  PubMed  Google Scholar 

  • Machius M, Wiegand G, Huber R (1995) Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at 2.2 Å resolution. J Mol Biol 246:545–559

    Article  CAS  PubMed  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2001) The RDP II (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174

    Article  Google Scholar 

  • Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A (2012) Salinibacter iranicus sp. nov. and Salinibacter luteus sp. nov., isolated from a salt lake, and emended descriptions of the genus Salinibacter and of Salinibacter ruber. Int J Syst Evol Microbiol 62(7):1521–1527

    Article  CAS  PubMed  Google Scholar 

  • Martín S, Márquez M, Sánchez-Porro C, Mellado E, Arahal D, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:33–439

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Maziah M, Zuraida AR, Halimi M, Zulkifli S,, Sreeramanan S (2009) Responses of banana plant-lets to rhizobacteria inoculation under salt stress condition. Am-Euras J Sustain Agric 3:290–305

    Google Scholar 

  • Meintanis C, Chalkou KI, Kormas KA, Lymperopoulou DS, Katsifas EA, Hatzinikolaou DG, Karagouni AD (2006) Application of rpoB sequences similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Lett Appl Microbiol 46:395–401

    Article  CAS  Google Scholar 

  • Meyer M, Stenzel U, Myles S, Prufer K, Hofreiter M (2007) Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res 35:97

    Article  CAS  Google Scholar 

  • Mezghani M, Alazard D, Karray F, Cayol JL, Joseph M, Postec A, Fardeau ML, Tholozan JL, Sayadi S (2012) Halanaerobacter jeridensis sp. nov., isolated from a hypersaline lake. Int J Syst Evol Microbiol 62(8):1970–1973

    Article  CAS  PubMed  Google Scholar 

  • Miao C, Jia F, Wan Y, Zhang W, Lin M, Jin W (2014) Halomonas huangheensis sp. nov., a moder- ately halophilic bacterium isolated from a saline–alkali soil. Int J Syst Evol Microbiol 64(3):915–920

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Moller MF, Kjeldsen KU, Ingvorsen K (2010) Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah. Antonie Van Leeuwenhoek 98(4):553–565

    Article  CAS  PubMed  Google Scholar 

  • Moreno ML, Perez D, Garcia MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol 59:651–681

    CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Rothballer M, Schmid M, Hartmann A (2012) Enhancement and restoration of growth of durum wheat (Triticum durum, varwaha) on saline soil by using Azospirillum brasilense NH and marine alga Ulva lactuca. In: Krueger D, Meyer H (eds) Algae, ecology, economic uses and environmental impact marine biology. Nova Sciences, New York, pp 29–52

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–542

    Article  CAS  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan, and their implication in providing salt tolerance to Glycine max (L.). Afr J Biotechnol 8:5762–5766

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Iron adsorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46(7):707–715

    Article  CAS  Google Scholar 

  • Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasiliense. Tasks Veg Sci 44:133–147

    Article  Google Scholar 

  • Oren M (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269

    Article  PubMed  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 3(1):825–834

    Article  CAS  Google Scholar 

  • Pandey S, Singh SP (2012) Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations. Appl Biochem Biotechnol 166:1747–1757

    Article  CAS  PubMed  Google Scholar 

  • Pappa A, Sánchez-Porro C, Lazoura P, Kallimanis A, Perisynakis A, Ventosa A, Drainas C, Koukkou A (2010) Bacillus halochares sp. nov., a halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 60(6):1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752

    Article  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48(5):378–384

    Article  CAS  PubMed  Google Scholar 

  • Perez E, Miguel S, Marıa MB, Yarzabal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39(11):2905–2914

    Article  CAS  Google Scholar 

  • Pourbabaee AA, Bostani S, Amozzegar MA, Naddaf R (2011) Decolorization of cibacron black w-55 under Alkaline conditions by new strain of Halomonas sp. isolated from textile effl uent. Iran J Chem Chem Eng 30(4):63–70

    CAS  Google Scholar 

  • Pugin B, Blamey JM, Baxter BK, Wiegel J (2012) Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium. Int J Syst Evol Microbiol 62(9):2090–2096

    Article  PubMed  Google Scholar 

  • Rajput L, Imran A, Mubeen F, Hafeez FY (2013) Salt-tolerant PGPR strain Planococcus rifi etoen- sis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45:1955–1962

    Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:1–7

    Article  CAS  Google Scholar 

  • Rashid N, Imanaka H, Fukui T, Atomi H, Imanaka T (2004) Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic Archaeon thermococcus kodakaraensis. J Bacteriol 186(13):4185–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Díaz M, Rodelas B, Pozo C, Martínez-Toledo MV, González-López J (2008) A review on the taxonomy and possible screening traits of plant growth promoting rhizobacteria. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Chichester

    Google Scholar 

  • Roessler M, Muller V (2001) Chloride dependence of glycine betaine transport in Halobacillus halophilus. FEBS Lett 489:125–128

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by Arbuscular mycorrhizal symbiosis and by drought stress. J Exp Bot 52:2241–2242

    CAS  PubMed  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee B, Matsumoto TK et al (2001) AtHKT1 is a salt tolerance determinant that controls Na1 entry into plant roots. Proc Natl Acad Sci U S A 98:14150–14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadfi-Zouaoui N, Essghaier B, Hannachi I, Hajlaoui MR, Boudabous A (2007) First report on the use of moderately halophilic bacteria against stem canker of greenhouse tomatoes caused by Botrytis cinerea. Ann Microbiol 57(3):337–339

    Google Scholar 

  • Saghafi K, Ahmadi J, Asgharzadeh A, Bakhtiari S (2013) The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int J Adv Biol Biomed Res 4:421–431

    Article  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Kishore N, Venkateswarlu B (2009a) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601

    Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009b) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soil 46:17–26

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Santos AF, Valle RS, Pacheco CA, Alvarez VM, Seldin L, Santos AL (2013) Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium. Braz J Microbiol 44:1299–1304

    Article  PubMed  Google Scholar 

  • Sapsirisopa S, Chookietwattana K, Maneewan K, khaengkhan P (2009) Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. Asian J Food Agro-Ind (Special Issue):S69–S74

    Google Scholar 

  • Saralov A, Kuznetsov B, Reutskikh E, Baslerov R, Panteleeva A, Suzina N (2012) Arhodomonas recens sp. nov., a halophilic alkane-utilizing hydrogen-oxidizing bacterium from the brines of flotation enrichment of potassium minerals. Microbiology 81(5):582–588

    Article  CAS  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 205–223

    Chapter  Google Scholar 

  • ShaoMin Y, Guang W (2013) Secretory pathway of cellulase: a mini-review. Biotechnol Biofuels. doi:10.1186/1754-6834-6-177

    Google Scholar 

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Singh RN, Kaushik R, Saxena AK, Sharma AK (2015) Deciphering diversity of salt-tolerant Bacilli from saline soils of eastern Indo-Gangetic Plains of India. Geomicrobiology 32:70–180

    Google Scholar 

  • Shen M, Kang YJ, Wang HL, Zhang XS, Zhao QX (2012) Effect of plant growth promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill) under simulated seawater irrigation. J Gen Appl Microbiol 58:253–262

    Article  CAS  PubMed  Google Scholar 

  • Shirmardi M, Savaghebi GR, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F, Sadat A (2010) Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflowers (Helianthus annuus L). Not Sci Biol 2:57–66

    CAS  Google Scholar 

  • Shivanand P, Mugeraya G, Kumar A (2013) Utilization of renewable agricultural residues for the production of extracellular halostable cellulase from newly isolated Halomonas sp. strain PS47. Ann Microbiol 63(4):1257–1263

    Article  CAS  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogeae (L.) by the interaction of halotolerant plant-growth promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Raval VH, Purohit MK, Pandey S, Thumar JT, Gohel SD, Akbari VG, Rawal CM (2012) Haloalkaliphilc bacteria and actinobacteria from the saline habitats: new opportunities for bio-catalysis and bioremediation. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, New York/Dordrecht (Library of Congress Control Number: 2011944027), pp 415–429

    Google Scholar 

  • Sivaprakasam S, Mahadevan S, Sekar S, Rajakumar S (2008) Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microb Cell Fact 7:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sleator RD, Hill C (2001) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  Google Scholar 

  • Sorokin D, Kolganova T (2013) Bacterial chitin utilization at halophilic conditions. Extremophiles 18:243–248

    Article  PubMed  CAS  Google Scholar 

  • Souza PM (2010) Application of microbial α-amylase in industry – a review. Braz J Microbiol 41:850–861

    PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Srivastava CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56(4):453–457

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103(38):13997–14002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Goodfellow M, O’Donnell AG (1993) Cell envelopes and classification. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 195–250

    Google Scholar 

  • Tan Z, Hurek T, Vinuesa P, Müller P, Ladha JK, Reinhold-Hurek B (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing Rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67(8):3655–3664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exo-polysaccharide-producing plant growth-promoting rhizobacteria salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Vaishnav A, Jain S, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Effect of nitric oxide signaling in bacterial treated soybean plant under salt stress. Arch Microbiol 195:171–177

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile‐mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119(2):539–551

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1–15

    Article  CAS  Google Scholar 

  • Van Qua D, Simidu U, Taga N (1981) Purifi cation and some properties of halophilic protease produced by a moderately halophilic marine Pseudomonas sp. Can J Microbiol 27:505–510

    Article  Google Scholar 

  • Vidyasagar M, Prakash S, Jayalakshmi S, Sreeramulu K (2007) Optimization of culture conditions for the production of halothermophilic protease from halophilic bacterium Chromohalobacter sp. TVSP101. World J Microbiol Biotechnol 23:655–662

    Article  CAS  Google Scholar 

  • Vijayaraghavan P, Jebamalar TRJ, Vincent SGP (2012) Biosynthesis optimization and purification of a solvent stable alkaline serine protease from Halobacterium sp. Ann Microbiol 62:403–410

    Article  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Liu JH, Xiao W, Zhang XX, Li YQ, Lai YH, Ji KY, Wen ML, Cui XL (2012) Fodinibius salinus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt mine. Int J Syst Evol Microbiol 62(2):390–396

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Sun L, Wei D, Zhou B, Zhang J, Gu X, Zhang L, Liu Y, Li Y, Guo W (2014) Bacillus daqingensis sp. nov., a halophilic, alkaliphilic bacterium isolated from saline-sodic soil in Daqing, China. J Microbiol 52(7):548–553

    Article  CAS  PubMed  Google Scholar 

  • Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7(5):423–431

    Article  CAS  PubMed  Google Scholar 

  • Whittaker P, Mossoba MM, Al-Khaldi S, Fry FS, Dunkel VC, Tall BD, Yurawecz MP (2003) Identification of foodborne bacteria by infrared spectroscopy using cellular fatty acid methyl esters. J Microbiol Methods 55(3):709–716

    Article  CAS  PubMed  Google Scholar 

  • Woese C (1993) The Archaea: their history and significance. In Kates M, Kushner D, Matheson A (eds) The biochemistry of Archaea (Archaebacteria). Elsevier, Amsterdam, pp vii–xxix

    Google Scholar 

  • Yoon JH, Kang SJ, Jung YT, Lee KC, Oh HW, Oh TK (2010) Virgibacillus byunsanensis sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 60(2):291–295

    Article  PubMed  Google Scholar 

  • Zeikus JG, Hegge PW, Thompson TE, Phelps TJ, Langworthy TA (1983) Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov. J Biotechnol 152:114–124

    Google Scholar 

  • Zhang G, Li S, Xue Y, Mao L, Ma Y (2012) Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 16:35–43

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, A., Vaishnav, A., Jamali, H., Srivastava, A.K., Saxena, A.K., Srivastava, A.K. (2016). Halophilic Bacteria: Potential Bioinoculants for Sustainable Agriculture and Environment Management Under Salt Stress. In: Choudhary, D., Varma, A., Tuteja, N. (eds) Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2854-0_14

Download citation

Publish with us

Policies and ethics