Skip to main content

Metric-Independent Spacetime Volume-Forms and Dark Energy/Dark Matter Unification

  • Conference paper
  • First Online:
  • 1222 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Abstract

The method of non-Riemannian (metric-independent) spacetime volume-forms (alternative generally-covariant integration measure densities) is applied to construct a modified model of gravity coupled to a single scalar field providing an explicit unification of dark energy (as a dynamically generated cosmological constant) and dust fluid dark matter flowing along geodesics as an exact sum of two separate terms in the scalar field energy-momentum tensor. The fundamental reason for the dark species unification is the presence of a non-Riemannian volume-form in the scalar field action which both triggers the dynamical generation of the cosmological constant as well as gives rise to a hidden nonlinear Noether symmetry underlying the dust dark matter fluid nature. Upon adding appropriate perturbation breaking the hidden “dust” Noether symmetry we preserve the geodesic flow property of the dark matter while we suggest a way to get growing dark energy in the present universe’ epoch free of evolution pathologies. Also, an intrinsic relation between the above modified gravity \(+\) single scalar field model and a special quadratic purely kinetic “k-essence” model is established as a weak-versus-strong-coupling duality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The physical meaning of the “measure” gauge field \(\textit{B}_{\mu \nu \lambda }\) (2) as well as the meaning of the integration constant \(\textit{M}\) are most straightforwardly seen within the canonical Hamiltonian treatment of (1) [36]. For more details about the canonical Hamiltonian treatment of general gravity-matter theories with (several independent) non-Riemannian volume-forms we refer to [38, 39].

References

  1. J. Frieman, M. Turner and D. Huterer, Ann. Rev. Astron. Astrophys. 46 385–432 (2008)  (arXiv:0803.0982).

    Google Scholar 

  2. A. Liddle, “Introduction to Modern Cosmology”, 2nd ed., (John Wiley & Sons, Chichester, West Sussex, 2003).

    Google Scholar 

  3. S. Dodelson, “Modern Cosmology”, (Acad. Press, San Diego, California, 2003).

    Google Scholar 

  4. A.G. Riess, et.al., Astron. J. 116, 1009–1038 (1998).  (arXiv:astro-ph/9805201)

  5. S. Perlmutter, et.al., Astrophys. J. 517, 565–586 (1999).  (arXiv:astro-ph/9812133)

  6. A.G. Riess, et.al., Astrophys. J. 607, 665–687 (2004).  (arXiv:astro-ph/0402512)

  7. M.J. Rees, Phil. Trans. R. Soc. Lond. A361, 2427 (2003).  (arXiv:astro-ph/0402045).

    Article  Google Scholar 

  8. K. Garrett and G. Duda, Adv. Astron. 2011, 968283 (2011).  (arXiv:1006.2483)

    Article  Google Scholar 

  9. M. Drees and G. Gerbier, Phys. Rev. D86 (2012) 010001.  (arXiv:1204.2373)

    Article  Google Scholar 

  10. A.Yu. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. 511B (2001) 265.  (arXiv:gr-qc/0103004)

  11. N. Bilic, G. Tupper, and R. Viollier, Phys. Lett. 535B (2002) 17.  (arXiv:astro-ph/0111325)

    Article  Google Scholar 

  12. N. Bilic, G. Tupper and R. Viollier, J. Phys. A40, 6877 (2007).  (arXiv:gr-qc/0610104)

  13. N. Bilic, G. Tupper and R. Viollier, Phys. Rev. D80 (2009) 023515.  (arXiv:0809.0375)

    Article  Google Scholar 

  14. R.J. Scherrer, Phys. Rev. Lett. 93 2004011301.  (arXiv:astro-ph/0402316)

  15. D. Giannakis and W. Hu, Phys. Rev. D72 (2005) 063502.  (arXiv:astro-ph/0501423)

    Article  Google Scholar 

  16. R. de Putter and E. Linder, Astropart. Phys. 28, 263–272 (2007).  (arXiv:0705.0400)

  17. D. Bertacca, M. Pietroni and S. Matarrese, Mod. Phys. Lett. A22 (2007) 2893–2907.  (arXiv:astro-ph/0703259)

  18. T. Chiba, T.Okabe and M. Yamaguchi, Phys. Rev. D62 (2000) 023511.  (arXiv:astro-ph/9912463)

    Article  Google Scholar 

  19. C. Armendariz-Picon, V. Mukhanov and P. Steinhardt, Phys. Rev. Lett. 85 (2000) 4438.  (arXiv:astro-ph/0004134)

    Article  Google Scholar 

  20. C. Armendariz-Picon, V. Mukhanov and P. Steinhardt, Phys. Rev. D63 (2001) 103510.  (arXiv:astro-ph/0006373)

    Article  Google Scholar 

  21. T. Chiba, Phys. Rev. D66 (2002) 063514.  (arXiv:astro-ph/0206298)

    Article  Google Scholar 

  22. A. Chamseddine and V. Mukhanov, JHEP 1311, 135 (2013).  (arXiv:1308.5410)

    Article  Google Scholar 

  23. A. Chamseddine, V. Mukhanov and A. Vikman, JCAP 1406, 017 (2014).  (arXiv:1403.3961)

    Article  Google Scholar 

  24. M. Chaichian, J. Kluson, M. Oksanen and A. Tureanu, JHEP 1412, 102 (2014).  (arXiv:1404.4008)

    Article  Google Scholar 

  25. R. Myrzakulov, L. Sebastiani and S. Vagnozzi, Eur. Phys. J. C75, 444 (2015).  (arXiv:1504.07984)

  26. A. Aviles, N. Cruz, J. Klapp and O. Luongo, Gen. Rel. Grav. 47, art.63 (2015.)  (arXiv:1412.4185)

  27. E. Guendelman and A. Kaganovich, Phys. Rev. D53 (1996) 7020–7025.  (arXiv:gr-qc/9605026)

  28. E.I. Guendelman, Mod. Phys. Lett. A14, 1043–1052 (1999).  (arXiv:gr-qc/9901017)

  29. E. Guendelman and A. Kaganovich, Phys. Rev. D60, 065004 (1999).  (arXiv:gr-qc/9905029)

  30. E.I. Guendelman, Found. Phys. 31. 1019–1037 (2001).  (arXiv:hep-th/0011049)

  31. E. Guendelman and O. Katz, Class. Quantum Grav. 20, 1715–1728 (2003).  (arXiv:gr-qc/0211095)

    Google Scholar 

  32. E. Guendelman and P. Labrana, Int. J. Mod. Phys. D22, 1330018 (2013).  (arXiv:13037267)

  33. E. Guendelman, H.Nishino and S. Rajpoot, Phys. Lett. B732, 156 (2014).  (arXiv:1403.4199)

    Article  Google Scholar 

  34. E. Guendelman, D. Singleton and N. Yongram, JCAP 1211, 044 (2012).  (arXiv:1205.1056)

    Article  Google Scholar 

  35. S. Ansoldi and E. Guendelman, JCAP 1305, 036 (2013).  (arXiv:1209.4758)

    Article  Google Scholar 

  36. E. Guendelman, E. Nissimov and S. Pacheva, Eur. Phys. J. C75, 472–479 (2015).  (arXiv:1508.02008)

  37. E. Guendelman, R. Herrera, P. Labrana, E. Nissimov and S. Pacheva, Gen. Rel. Grav. 47, art.10 (2015).  (arXiv:1408.5344v4)

  38. E. Guendelman, E. Nissimov and S. Pacheva, in Eight Mathematical Physics Meeting, ed. by B. Dragovic and I. Salom (Belgrade Inst. Phys. Press, Belgrade, 2015), pp. 93–103.  (arXiv:1407.6281v4)

  39. E. Guendelman, E. Nissimov and S. Pacheva, Int. J. Mod. Phys. A30 (2015) 1550133.  (arXiv:1504.01031)

  40. E. Guendelman, Class. Quantum Grav. 17 (2000) 3673–3680.  (arXiv:hep-th/0005041)

    Google Scholar 

  41. E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, Phys. Rev. D66 (2002) 046003.  (arXiv:hep-th/0203024)

    Article  MathSciNet  Google Scholar 

  42. E. Guendelman, E. Nissimov, S. Pacheva and M. Vasihoun, Bulg. J. Phys. 41, 123–129 (2014).  (arXiv:1404.4733)

  43. E. Guendelman, E. Nissimov, S. Pacheva and M. Vasihoun, in Eight Mathematical Physics Meeting, ed. by B. Dragovic and I. Salom (Belgrade Inst. Phys. Press, Belgrade, 2015), pp. 105–115.  (arXiv:1501.05518)

  44. R.R. Caldwell, M. Kamionkowski and N.N. Weinberg, Phys. Rev. Lett. 91 (2003)071301  (arXiv:astro-ph/0302506)

    Article  Google Scholar 

  45. J.D. Barrow, Class. Quantum Grav. 21 (2004) L79–L82   (arXiv:gr-qc/0403084)

    Google Scholar 

  46. A.V. Astashenok, S. Nojiri, S.D. Odintsov and A.V. Yurov, Phys. Lett. 709B (2012) 396–403  (arxiv:1201.4056).

  47. E. Guendelman, E. Nissimov and S. Pacheva, Eur. J. Phys. C76, 90 (2016) (arXiv:1511.07071).

Download references

Acknowledgements

We gratefully acknowledge support of our collaboration through the academic exchange agreement between the Ben-Gurion University in Beer-Sheva, Israel, and the Bulgarian Academy of Sciences. S.P. and E.N. have received partial support from European COST actions MP-1210 and MP-1405, respectively, as well from Bulgarian National Science Fund Grant DFNI-T02/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Pacheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Guendelman, E., Nissimov, E., Pacheva, S. (2016). Metric-Independent Spacetime Volume-Forms and Dark Energy/Dark Matter Unification. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_16

Download citation

Publish with us

Policies and ethics