Skip to main content

Kruskal–Penrose Formalism for Lightlike Thin-Shell Wormholes

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Abstract

The original formulation of the “Einstein–Rosen bridge” in the classic paper of Einstein and Rosen (1935) is historically the first example of a static spherically-symmetric wormhole solution. It is not equivalent to the concept of the dynamical and non-traversable Schwarzschild wormhole, also called “Einstein–Rosen bridge” in modern textbooks on general relativity. In previous papers of ours we have provided a mathematically correct treatment of the original “Einstein–Rosen bridge” as a traversable wormhole by showing that it requires the presence of a special kind of “exotic matter” located on the wormhole throat – a lightlike brane (the latter was overlooked in the original 1935 paper). In the present note we continue our thorough study of the original “Einstein–Rosen bridge” as a simplest example of a lightlike thin-shell wormhole by explicitly deriving its description in terms of the Kruskal–Penrose formalism for maximal analytic extension of the underlying wormhole spacetime manifold. Further, we generalize the Kruskal–Penrose description to the case of more complicated lightlike thin-shell wormholes with two throats exhibiting a remarkable property of QCD-like charge confinement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the general construction of timelike thin-shell wormholes, see the book [9].

  2. 2.

    Subsequently, traversability of the Einstein–Rosen bridge has been studied using Kruskal–Szekeres coordinates for the Schwarzschild black hole [17], or the 1935 Einstein–Rosen coordinate chart (6) [18].

References

  1. C. Barrabés and W. Israel, Phys. Rev. D43 (1991) 1129–1142.

    Google Scholar 

  2. C. Barrabés and P. Hogan, “Singular Null Hypersurfaces in General Relativity”, (World Scientific 2003).

    Google Scholar 

  3. C. Barrabés and W. Israel, Phys. Rev. D71 (2005) 064008. (arXiv:gr-qc/0502108)

  4. E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva, Phys. Lett. B673 (2009) 288–292. (arXiv:0811.2882);

  5. E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva, Phys. Lett. B681 (2009) 457–462. (arXiv:0904.3198);

  6. E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva, Int. J. Mod. Phys. A25 (2010) 1405–1428. (arXiv:0904.0401)

  7. E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, Int. J. Mod. Phys. A25 (2010) 1571–1596. (arXiv:0908.4195)

  8. E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, Gen. Rel. Grav. 43 (2011) 1487–1513. (arXiv:1007.4893).

  9. M. Visser, “Lorentzian Wormholes. From Einstein to Hawking” (Springer, Berlin, 1996).

    Google Scholar 

  10. A. Einstein and N. Rosen, Phys. Rev. 48 (1935) 73.

    Google Scholar 

  11. Ch. Misner, K. Thorne and J.A. Wheeler, “Gravitation” (W.H. Freeman and Co., San Francisco, 1973).

    Google Scholar 

  12. E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, Phys. Rev. D72 20050806011. (arXiv:hep-th/0507193)

  13. E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, Fortschritte der Physik 55 (2007) 579. (arXiv:hep-th/0612091)

  14. E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, in “Fourth Internat. School on Modern Math. Physics”, ed. by B. Dragovich and B. Sazdovich (Belgrade Inst. Phys. Press, Belgrade 2007), pp. 215-228. (arXiv:hep-th/0703114).

  15. E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, in “Lie Theory and Its Applications in Physics 07”, ed. by V. Dobrev and H. Doebner (Heron Press, Sofia, 2008). (arXiv:0711.1841)

  16. E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, Int. J. Mod. Phys. A26 (2011) 5211-5239. (arXiv:1109.0453 [hep-th])

  17. N. Poplawski, Phys. Lett. 687B (2010) 110-113. (arXiv:0902.1994)

  18. M.O. Katanaev, Mod. Phys. Lett. A29 (2014) 1450090. (arXiv:1310.7390)

  19. T. Levi-Civita, Rend. R. Acad. Naz. Lincei, 26, 519 (1917).

    Google Scholar 

  20. B. Bertotti, Phys. Rev. D116 (1959) 1331.

    Google Scholar 

  21. I. Robinson, Bull. Akad. Pol., 7, 351 (1959).

    Google Scholar 

Download references

Acknowledgements

E.G., E.N. and S.P. gratefully acknowledge support of our collaboration through the academic exchange agreement between the Ben-Gurion University in Beer-Sheva, Israel, and the Bulgarian Academy of Sciences. S.P. and E.N. have received partial support from European COST actions MP-1210 and MP-1405, respectively. E.N., S.P. and M.S. are also thankful to Bulgarian National Science Fund for support via research grant DFNI-T02/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Nissimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Guendelman, E., Nissimov, E., Pacheva, S., Stoilov, M. (2016). Kruskal–Penrose Formalism for Lightlike Thin-Shell Wormholes. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_15

Download citation

Publish with us

Policies and ethics