Skip to main content

A VDVTA-Based Novel Configuration for Realizing Grounded Inductance

  • Conference paper
  • First Online:
Book cover Proceeding of International Conference on Intelligent Communication, Control and Devices

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 479))

  • 2151 Accesses

Abstract

This paper proposes a new active simulator of grounded inductance using single voltage differencing voltage transconductance amplifier (VDVTA), one grounded capacitor and one grounded resistance. The presented configuration is electronically controllable, exhibits low nonideal effects and has low values of active and passive sensitivity. The working of the presented active inductor simulator is confirmed by employing it in designing of a voltage mode (VM) band-pass biquad filter. The performance of proposed inductor simulator and band-pass filter is demonstrated by SPICE simulations with TSMC CMOS 0.18 µm process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ford, R.L., Girling, F.E.J.: Active filters and oscillators using simulated inductance. Electronics Letters, 2(2) (1966), 481–482.

    Article  Google Scholar 

  2. Prescott, A.J.: Loss compensated active gyrator using differential input operational amplifier. Electronics Letters, 2(7) (1966), 283–284.

    Article  Google Scholar 

  3. Orchard, H.J., Willson, A.N.: New active gyrator circuits. Electronics Letters, 10(13) (1974), 261–262.

    Article  Google Scholar 

  4. Dutta Roy, S.C.: On operational amplifier simulation of grounded inductance. Archiv fuer Elektronik und Uebertragungstechnik, 29 (1975), 107–115.

    Google Scholar 

  5. Senani, R.: Active simulation of inductors using current conveyors. Electronics Letters, 14(1978), 483–484.

    Article  Google Scholar 

  6. Nandi, R.: Novel insensitive lossless inductor simulation through inverse function generation. Electronics Letters, 16(12) (1980), 481–482.

    Article  Google Scholar 

  7. Nandi, R.: Lossless inductor simulation: novel configurations using DVCCS. Electronics Letters, 16(17) (1980), 666–667.

    Article  Google Scholar 

  8. Paul, A. N., Patranabis, D.: Active simulation of grounded inductors using a single current conveyor. IEEE Trans. Circuits and Systems, 28(1981), 164–165.

    Article  Google Scholar 

  9. Fabre, A.: Gyrator implementation from commercially available trans-impedance operational amplifiers. Electronics Letters, 28(3) (1992), 263–264.

    Article  Google Scholar 

  10. Arslan, E., Cam, U., Cicekoglu, O.: Novel lossless grounded inductance simulators employing only a single first generation current conveyor. Frequenz; journal of RF engineering and telecommunications. 57(2003), 204–206.

    Google Scholar 

  11. Yuce, E., Minaei, S., Cicekoglu, O.: A novel grounded inductor realization using a minimum number of active and passive components. ETRI Journal, 27(4) (2005), 427–432.

    Article  Google Scholar 

  12. Parveen, T., Ahmed, M.T.: Simulation of ideal grounded tunable inductor and its application in high quality multifunctional filter. Microelectronics International Journal, 23(3) (2006), 9–13.

    Article  Google Scholar 

  13. Yuce, E., Minaei, S., Cicekoglu, O.: Limitations of the simulated inductors based on a single current conveyor. IEEE Trans. Circuits and Systems, 53(12) (2006), 2860–2867.

    Article  Google Scholar 

  14. Psychalinos, C., Spanidou, A.: Current amplifier based grounded and floating inductance simulators. International Journal of Electronics and Communication (AEU), 60(2006), 168–171.

    Article  Google Scholar 

  15. Yuce, E.: Grounded Inductor Simulators with Improved Low Frequency Performances. IEEE Trans. Instrumentation and Measurement, 57(5) (2008), 1079–1084.

    Article  Google Scholar 

  16. Pal, K., Nigam, M.J.: Novel active impedances using current conveyors. Journal of Active and Passive Electronic Devices, 3(2008), 29–34.

    Google Scholar 

  17. Yuce, E., Minaei, S.: A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Trans. Circuits and Systems, 55(1) (2008), 254–263.

    MathSciNet  Google Scholar 

  18. Yuce, E., Minaei, S.: On the realization of simulated inductors with reduced parasitic impedance effects. Circuits Systems and Signal Processing, 28(2009), 451–465.

    Article  Google Scholar 

  19. Yuce, E.: Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integrated Circuits and Signal Processing, 59(1) (2009), 77–82.

    Article  MathSciNet  Google Scholar 

  20. Prasad, D., Bhaskar, D.R., Singh, A.K.: New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers. Radioengineering, 19(1) (2010), 194–198.

    Google Scholar 

  21. Kumar, P., Senani, R.: New grounded simulated inductance circuit using a single PFTFN. Analog Integrated Circuits and Signal Processing, 62(2010), 105–112.

    Article  Google Scholar 

  22. Herencsar, N., Koton, J., Vrbra, K.: CFTA-based active-C grounded positive inductance simulator and its application, Elektrorevue, 1(1) (2010), 24–27.

    Google Scholar 

  23. Kacar, F.: New lossless inductance simulators realization using a minimum active and passive components. Microelectronics Journal, 41(2–3) (2010), 109–113.

    Article  Google Scholar 

  24. Prasad, D., Bhaskar, D. R., Pushkar, K.L.: Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers. Active and Passive Electronic Components, (2011), 8 pages.

    Google Scholar 

  25. Ibrahim, M.A., Minaei, S., Yuce, E., Herencsar, N., Koton, J.: Lossless grounded inductance simulation using only one modified dual output DDCC. Proc. of the 34thInternational Conference on Telecommunications and Signal Processing (TSP2011), (2011) 261–264.

    Google Scholar 

  26. Kacar, F., Kuntman, H.: CFOA-based lossless and lossy inductance simulators, Radioengineering, 20(3) (2011), 627–631.

    Google Scholar 

  27. Metin, B.: Supplementary inductance simulator topologies employing single DXCCII. Radioengineering, 20(3) (2011), 614–618.

    Google Scholar 

  28. Myderrizi, I., Minaei, S., Yuce, E.: DXCCII based grounded inductance simulators and filter applications. Microelectronics Journal, 42(9) (2011), 1074–1081.

    Article  Google Scholar 

  29. Ibrahim, M.A., Minaei, S., Yuce, E., Herencsar, N., Koton, J.: Lossy/lossless floating/grounded inductance simulator using one DDCC. Radioengineering, 21(1) (2012), 2–10.

    Google Scholar 

  30. Gupta, A., Senani, R., Bhaskar, D. R., Singh, A. K.: OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits, Systems, and Signal Processing, 31(2) (2012), 489–499.

    Article  MathSciNet  Google Scholar 

  31. Kacar. F., Yesil, A., Minaei, S., Kuntman, H.: Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. International Journal of Electronics and Communication (AEU), 68(1) (2014), 73–78.

    Article  Google Scholar 

  32. Yesil. A., Kacar, F., Gurkan, K.: Lossless grounded inductance simulator employing single VDBA and its experimental band-pass filter application. International Journal of Electronics and Communication (AEU), 68(2) (2014), 143–150.

    Article  Google Scholar 

  33. Shaktour, M.T.: Unconventional circuit elements for ladder filter design. PhD. Thesis, Brno Univ. Tech.

    Google Scholar 

  34. Singh, G., Prasad, D., Bhaskar, D. R.: Single VDVTA-based voltage-mode biquad filter. Circuits and Systems, 6 (2015), 55–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanshyam Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Ghanshyam Singh, Dinesh Prasad, Bhaskar, D.R., Mayank Srivastava (2017). A VDVTA-Based Novel Configuration for Realizing Grounded Inductance. In: Singh, R., Choudhury, S. (eds) Proceeding of International Conference on Intelligent Communication, Control and Devices . Advances in Intelligent Systems and Computing, vol 479. Springer, Singapore. https://doi.org/10.1007/978-981-10-1708-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1708-7_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1707-0

  • Online ISBN: 978-981-10-1708-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics