Skip to main content

Mechanisms of Plant Pollutant Uptake as Related to Effective Biomonitoring

  • Chapter
  • First Online:

Abstract

Biomonitoring is a method that uses the responses of plants or animals to their surroundings to evaluate the status of an environment. Among taxonomic groups, pine needles and mosses are widely used for biomonitoring, especially for atmospheric environments. However, several studies have indicated that each of these plants reacts differently to changes in their habitat. Here, we characterized these contrasting responses and investigated the causes of these differences by comparing atmospheric pollutants (polycyclic hydrocarbons: PAHs) that accumulated in pine needles and mosses. Our results revealed that pine needles absorbed lower molecular weight PAHs, whereas mosses preferentially accumulated higher molecular weight PAHs. Furthermore, the comparison of their PAH isomer ratios showed that the pollution sources were not identical, even though the plant samples were collected from nearly the same sites. These differences can be explained by their distinct leaf structures and uptake mechanisms, as well as the influence of soil particles. Our novel results suggest that both pine needles and mosses can be used as bioindicators to assess PAH pollution multi-directionally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aas E, Beyer J, Jonsson G, Reichert WL, Andersen OK (2001) Evidence of uptake, biotransformation and DNA binding of polyaromatic hydrocarbons in Atlantic cod and corkwing wrasse caught in the vicinity of an aluminium works. Mar Environ Res 52:213–229

    Article  CAS  PubMed  Google Scholar 

  • Bidleman TF (1988) Atmospheric processes. Wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning. Environ Sci Technol 22:361–367

    Article  CAS  Google Scholar 

  • Bozlaker A, Muezzinoglu A, Odabasi M (2008) Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. J Hazard Mater 153:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Bucheli TD, Blum F, Desaules A, Gustafsson O (2004) Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Gałuszka A (2007) Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from different forest communities: a case study, south-central Poland. Chemosphere 67:1415–1422

    Article  PubMed  Google Scholar 

  • Gerdol R, Bragazza L, Marchesini R, Medici A, Pedrini P, Benedetti S, Bovolenta A, Coppi S (2002) Use of moss (Tortula muralis Hedw.) for monitoring organic and inorganic pollution in urban and rural sites in Northern Italy. Atmos Environ 36:4069–4075

    Article  CAS  Google Scholar 

  • Gurjar BR, Jain A, Sharma A, Agarwal A, Gupta P, Nagpure AS, Lelieveld J (2010) Human health risks in megacities due to air pollution. Atmos Environ 44:4606–4613

    Article  CAS  Google Scholar 

  • Harmens H, Mills G, Hayes F, Norris D, The participants of the ICP Vegetation (2015) Air pollution and vegetation. ICP vegetation annual report 2014/2015

    Google Scholar 

  • Holoubek I, Korínek P, Seda Z, Schneiderová E, Holoubková I, Pacl A, Tríska J, Cudlín P, Cáslavský J (2000) The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Pollut 109:283–292

    Article  CAS  PubMed  Google Scholar 

  • Howsam M, Jones KC, Ineson P (2000) PAHs associated with the leaves of tree species. I – concentrations and profiles. Environ Pollut 108:413–424

    Article  CAS  PubMed  Google Scholar 

  • Jouraeva VA, Johnson DL, Hasset JP, Nowak DJ (2002) Differences in accumulation of PAHs and metals on the leaves of Tilia x euchlora and Pyrus calleryana. Environ Pollut 120:331–338

    Article  CAS  PubMed  Google Scholar 

  • Klánová J, Čupr P, Baráková D, Šeda Z, Anděl P, Holoubek I (2009) Can pine needles indicate trends in the air pollution levels at remote sites? Environ Pollut 157:3248–3254

    Article  PubMed  Google Scholar 

  • Kłos A, Czora M, Rajfur M, Wacławek M (2012) Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water Air Soil Pollut 223:1829–1836

    Article  PubMed  Google Scholar 

  • Kopáček J, Posch M (2011) Anthropogenic nitrogen emissions during the Holocene and their possible effects on remote ecosystems. Global Biogeochem Cycles 25:GB2017. doi:10.1029/2010GB003779

    Google Scholar 

  • Krommer V, Zechmeister HG, Roder I, Scharf S, Hanus-Illnar A (2007) Monitoring atmospheric pollutants in the biosphere Wienerwald by a combined approach of biomonitoring methods and technical measurements. Chemosphere 67:1956–1966

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc F, De Sloover J (1970) Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Can J Bot 48:1485–1496

    Article  Google Scholar 

  • Lehndorff E, Schwark L (2004) Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler – Part II: polycyclic aromatic hydrocarbons (PAH). Atmos Environ 38:3793–3808

    Article  CAS  Google Scholar 

  • Lehndorff E, Schwark L (2009) Biomonitoring airborne parent and alkylated three-ring PAHs in the Greater Cologne Conurbation I: temporal accumulation patterns. Environ Pollut 157:1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang G, Jones KC, Li X, Peng X, Qi S (2005) Compositional fractionation of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum plumaeformae WILS.) from the northern slope of Nanling Mountains, South China. Atmos Environ 39:5490–5499

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B (1999) Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol J Environ Stud 8:131–136

    CAS  Google Scholar 

  • Mastral AM, Callén MS (2000) A review on polycyclic aromatic hydrocarbon (PAH) emission from energy generation. Environ Sci Technol 34:3051–3057

    Article  CAS  Google Scholar 

  • Migaszewski ZM, Gałuszka A, Pasławski P (2002) Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland. Environ Int 28:303–313

    Article  CAS  PubMed  Google Scholar 

  • Migaszewski ZM, Gałuszka A, Crock JG, Lamothe PJ, Dołegowska S (2009) Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska. Atmos Environ 43:1464–1473

    Article  CAS  Google Scholar 

  • Niu J, Chen J, Martens D, Quan X, Yang F, Kettrup A, Schramm K (2003) Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L.) Karst.] needles under sunlight irradiation. Environ Pollut 123:39–45

    Article  CAS  PubMed  Google Scholar 

  • OECD (2012) OECD environmental outlook to 2050: the consequences of inaction. doi:10.1787/9789264122246-en

  • Oishi Y (2012) Does uptake of Polycyclic Aromatic Hydrocarbons (PAHs) differ between pine needles and mosses? J Environ Inf Sci 40:31–36

    Google Scholar 

  • Oishi Y (2013) Comparison of pine needles and mosses as bio-indicators for polycyclic aromatic hydrocarbons. J Environ Prot 4:106–113

    Article  CAS  Google Scholar 

  • Ötvös E, Kozák IO, Fekete J, Sharma VK, Tuba Z (2004) Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. Sci Total Environ 330:89–99

    Article  PubMed  Google Scholar 

  • Pankow JF (1987) Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos Environ 21:2275–2283

    Article  CAS  Google Scholar 

  • Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelli A, Paola G, Valério F (2005) Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environ Pollut 133:293–301

    Article  CAS  PubMed  Google Scholar 

  • Ratola N, Amigo JM, Alves A (2010) Levels and sources of PAHs in selected sites from Portugal: biomonitoring with Pinus pinea and Pinus pinaster needles. Arch Environ Contam Toxicol 58:631–647

    Article  CAS  PubMed  Google Scholar 

  • Ratola N, Alves A, Psillakis E (2011) Biomonitoring of polycyclic aromatic hydrocarbons contamination in the island of Crete using pine needles. Water Air Soil Pollut 215:189–203

    Article  CAS  Google Scholar 

  • Schröder W, Holy M, Pesch R, Harmens H, Fagerli H, Alber R et al (2010) First Europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses. Atmos Environ 44:3485–3491

    Article  Google Scholar 

  • Shibata H, Branquinho C, McDowell WH, Mitchell MJ, Monteith DT, Tang J et al (2014) Consequences of altered nitrogen cycles in the coupled human and ecological system under changing climate: the need for long-term and site-based research. Ambio 44:178–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Technol 29:2905–2914

    Article  CAS  PubMed  Google Scholar 

  • Skert N, Falomo J, Giorgini L, Acquavita A, Capriglia L, Grahonja R, Miani N (2010) Biological and artificial matrixes as PAH accumulators: an experimental comparative study. Water Air Soil Pollut 206:95–103

    Article  CAS  Google Scholar 

  • Thomas W (1986) Representativity of mosses as biomonitor organisms for the accumulation of environmental chemicals in plants and soils. Ecotoxicol Environ Saf 11:339–346

    Article  CAS  PubMed  Google Scholar 

  • Tremolada P, Burnett V, Calamari D, Jones KC (1996) Spatial distribution of PAHs in the UK atmosphere using pine needles. Environ Sci Technol 30:3570–3577

    Article  CAS  Google Scholar 

  • Wang D, Chen J, Xu Z, Qiao X, Huang L (2005) Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine [Pinus thunbergii] needles under irradiation of sunlight: volatilization and photolysis. Atmos Environ 39:4583–4591

    Article  CAS  Google Scholar 

  • Wang Z, Chen J, Yang P, Tian F, Qiao X, Bian H, Ge L (2009) Distribution of PAHs in pine (Pinus thunbergii) needles and soils correlates with their gas-particle partitioning. Environ Sci Technol 43:1336–1341

    Article  CAS  PubMed  Google Scholar 

  • WMO/IGAC (2012) Impacts of megacities on air pollution and climate. http://www.wmo.int/pages/prog/arep/gaw/documents/Final_GAW_205.pdf. Accessed 2 Feb 2016

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Global COE Program, “Global Center for Education and Research on Human Security Engineering for Asian Megacities,” MEXT, Japan, and by Grant-in-Aid for Young Scientists (B) No. 26870241 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Oishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Oishi, Y. (2016). Mechanisms of Plant Pollutant Uptake as Related to Effective Biomonitoring. In: Kulshrestha, U., Saxena, P. (eds) Plant Responses to Air Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-10-1201-3_4

Download citation

Publish with us

Policies and ethics