Skip to main content

Natural Nanofibres for Composite Applications

  • Chapter
  • First Online:
Book cover Fibrous and Textile Materials for Composite Applications

Abstract

Cellulose and chitin are the two most abundant natural polysaccharides. Both have a semicrystalline microfibrillar structure from which nanofibres can be extracted. These nanofibres are rod-like microcrystals that can be used as nanoscale reinforcements in composites due to their outstanding mechanical properties. This chapter starts by reviewing the sources, extraction methods and properties of cellulose and chitin nanofibres. Then, their use in the fabrication of structural and functional nanocomposites and the applications that have been investigated are reviewed. Nanocomposites are materials with internal nano-sized structures. They benefit from the properties of the nanofillers: low density, nonabrasive, nontoxic, low cost, susceptibility to chemical modifications and biodegradability. Diverse manufacturing technologies have been used to produce films, fibres, foams, sponges, aerogels, etc. Given their natural origin and high stiffness, these polymers have attracted a lot of attention not only in the biomedical and tissue engineering fields but also in areas such as pharmaceutics, cosmetics, agriculture, biosensors and water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually biphasic: comprising a soft phase (the matrix) and a strong and stiff phase (the reinforcement).

  2. 2.

    Native cellulose is the designation of the cellulose produced by trees, plants, tunicates, algae, fungi and bacteria.

  3. 3.

    Also termed whiskers, nanowhiskers and nanocrystals.

References

  1. Gao H, Ji B, Jäger IL et al (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA 100:5597–5600

    Article  CAS  Google Scholar 

  2. Ray D, Sain S (2014) Nanocellulose-reinforced polymer matrix composites fabricated by In-Situ polymerization technique. In: Nanocellulose polymer nanocomposites, Wiley, pp 131–161

    Google Scholar 

  3. Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011

    Google Scholar 

  4. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  5. Borges JP, Godinho MH, Martins AF et al (2004) Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polym Compos 25:102–110

    Article  CAS  Google Scholar 

  6. Zeng J-B, He Y-S, Li S-L et al (2012) Chitin whiskers: an overview. Biomacromolecules 13:1–11

    Article  CAS  Google Scholar 

  7. Carlstrom D (1957) The crystal structure of alpha-chitin (poly-N-acetyl-D-glucosamine). J Biophys Biochem Cytol 3:669–683

    Article  CAS  Google Scholar 

  8. Michael TP, András V, John D et al (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005

    Article  CAS  Google Scholar 

  9. Nikolov S, Petrov M, Lymperakis L et al (2010) Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: the example of lobster cuticle. Adv Mater 22:519–526

    Article  CAS  Google Scholar 

  10. Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  11. Borges JP, Canejo JP, Fernandes SN et al (2014) Cellulose-based liquid crystalline composite systems. In: Nanocellulose polymer nanocomposites, Wiley, pp 215–235

    Google Scholar 

  12. Sjostrom E (1993) Chapter 2—introduction to carbohydrate chemistry. In: Sjostrom E (ed) Wood chemistry, 2nd edn. Academic Press, San Diego, pp 21–50

    Chapter  Google Scholar 

  13. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  14. Ibrahim M, El-Zawawy W (2015) Extraction of cellulose nanofibers from cotton linter and their composites. In: Pandey JK, Takagi H, Nakagaito AN et al (eds) Handbook of polymer nanocomposites. Processing, performance and application, Springer Berlin, pp 145–164

    Google Scholar 

  15. Qian Y, Qin Z, Vu N-M et al (2012) Comparison of nanocrystals from TEMPO oxidation of bamboo, softwood and cotton linter fibers with ultrasonic-assisted process. BioResources 7(4):4952–4964

    Google Scholar 

  16. Kopania E, Wietecha J, Ciechanska D (2012) Studies on isolation of celluose fibres from waste plant biomass. Fibres Text East Eur 20:167–171

    CAS  Google Scholar 

  17. Morán J, Alvarez V, Cyras V et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  CAS  Google Scholar 

  18. Deepa B, Abraham E, Cordeiro N et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090

    Article  CAS  Google Scholar 

  19. Li M, L-j W, Li D et al (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102:136–143

    Article  CAS  Google Scholar 

  20. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  21. Flauzino Neto WP, Silvério HA, Dantas NO et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488

    Article  CAS  Google Scholar 

  22. Mihranyan A (2011) Cellulose from cladophorales green algae: From environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460

    Article  CAS  Google Scholar 

  23. Keshk S (2014) Bacterial cellulose production and its industrial applications. Bioprocess Biotechniques 4:1–10

    Google Scholar 

  24. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  CAS  Google Scholar 

  25. Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559

    Article  CAS  Google Scholar 

  26. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102

    Google Scholar 

  27. Panthapulakkal S, Sain M (2012) Preparation and characterization of cellulose nanofibril films from wood fibre and their thermoplastic polycarbonate composites. Int J Polym Sci 2012:6

    Article  CAS  Google Scholar 

  28. Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  29. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  Google Scholar 

  30. Brinchi L, Cotana F, Fortunati E et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  Google Scholar 

  31. Klemm D, Schumann D, Kramer F et al (2009) Nanocellulose materials—different cellulose, different functionality. Macromol Symp 280:60–71

    Article  CAS  Google Scholar 

  32. Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111

    Article  CAS  Google Scholar 

  33. Borges JP, Godinho MH, Figueirinhas JL et al (2011) All-cellulosic based composites. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 399–421

    Chapter  Google Scholar 

  34. Habibi Y (2013) Chemical modification of nanocelluloses. In: Biopolymer nanocomposites, Wiley, pp 367–390

    Google Scholar 

  35. Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745

    Article  CAS  Google Scholar 

  36. Ifuku S, Nogi M, Abe K et al (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978

    Article  CAS  Google Scholar 

  37. Faruk O, Sain M, Farnood R et al (2014) Development of lignin and nanocellulose enhanced bio PU foams for automotive parts. J Polym Environ 22:279–288

    Article  CAS  Google Scholar 

  38. MacVicar R, Matuana LM, Balatinecz JJ (1999) Aging mechanisms in cellulose fiber reinforced cement composites. Cement Concr Compos 21:189–196

    Article  CAS  Google Scholar 

  39. Khan A, Huq T, Khan RA et al (2012) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174

    Article  CAS  Google Scholar 

  40. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  41. Stenstad P, Andresen M, Tanem B et al (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  42. Ferrer A, Filpponen I, Rodríguez A et al (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255

    Article  CAS  Google Scholar 

  43. Sacui IA, Nieuwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138

    Article  CAS  Google Scholar 

  44. Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    Article  CAS  Google Scholar 

  45. Cherian BM, Leão AL, de Souza SF et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  46. Grunert M, Winter W (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  47. Araki J, Wada M, Kuga S et al (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  48. Kumar A, Negi YS, Choudhary V et al (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8

    Google Scholar 

  49. Qin Z-Y, Tong G, Chin YCF et al (2011) Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation. BioResources 6(2):1136–1146

    Google Scholar 

  50. Zhao Y, Zhang Y, Lindström ME et al (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296

    Article  CAS  Google Scholar 

  51. Castro C, Zuluaga R, Álvarez C et al (2012) Bacterial cellulose produced by a new acid-resistant strain of gluconacetobacter genus. Carbohydr Polym 89:1033–1037

    Article  CAS  Google Scholar 

  52. Nguyen V, Flanagan B, Gidley M et al (2008) Characterization of cellulose production by a gluconacetobacter xylinus strain from kombucha. Curr Microbiol 57:449–453

    Article  CAS  Google Scholar 

  53. Nimeskern L, Martínez Ávila H, Sundberg J et al (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21

    Article  CAS  Google Scholar 

  54. Wesarg F, Schlott F, Grabow J et al (2012) In Situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles. Langmuir 28:13518–13525

    Article  CAS  Google Scholar 

  55. Salaberria AM, Labidi J, Fernandes SCM (2015) Different routes to turn chitin into stunning nano-objects. Eur Polym J 68:503–515

    Article  CAS  Google Scholar 

  56. Khor E (2001) Chitin: fulfilling a biomaterials promise. Elsevier Science Limited, Oxford

    Google Scholar 

  57. Martínez JP, Falomir MP, Gozalbo D (2014) Chitin: a structural biopolysaccharide with multiple applications. eLS. Wiley, Chichester

    Google Scholar 

  58. Jang M-K, Kong B-G, Jeong Y-I et al (2004) Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J Polym Sci Part A Polym Chem 42:3423–3432

    Article  CAS  Google Scholar 

  59. Gupta NS (2010) Chitin. Springer

    Google Scholar 

  60. Belamie E, Giraud-Guille MM (2004) Liquid-crystalline behavior in aqueous suspensions of elongated chitin microcrystals. Springer, Berlin

    Book  Google Scholar 

  61. Belamie E, Mosser G, Gobeaux F et al (2006) Possible transient liquid crystal phase during the laying out of connective tissues: α-chitin and collagen as models. J Phys Condens Matter 18:S115–S129

    Article  CAS  Google Scholar 

  62. Shervani Z, Taisuke Y, Ifuku S et al (2012) Preparation of gold nanoparticles loaded chitin nanofiber composite. Adv Nanopart 01:71–78

    Article  CAS  Google Scholar 

  63. Fan Y, Saito T, Isogai A (2008) Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules 9:1919–1923

    Article  CAS  Google Scholar 

  64. Fan Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils. Carbohydr Polym 77:832–838

    Article  CAS  Google Scholar 

  65. Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9:192–198

    Article  CAS  Google Scholar 

  66. J-i K, Takegawa A, Mine S et al (2011) Preparation of chitin nanowhiskers using an ionic liquid and their composite materials with poly(vinyl alcohol). Carbohydr Polym 84:1408–1412

    Article  CAS  Google Scholar 

  67. Barber PS, Griggs CS, Bonner JR et al (2013) Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem 15:601–607

    Google Scholar 

  68. Dolphen and Thiravetyan (2011) Adsorption of melanoidins by chitin nanofibers. Chem Eng J 166:6

    Google Scholar 

  69. Goodrich JD, Winter WT (2007) α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8:252–257

    Article  CAS  Google Scholar 

  70. Sriupayo S, Supaphol P, Blackwell J et al (2005) Preparation and characterization of @a-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46:8

    Google Scholar 

  71. Zhou Y, Fu S, Pu Y et al (2014) Preparation of aligned porous chitin nanowhisker foams by directional freeze–casting technique. Carbohydr Polym 112:277–283

    Article  CAS  Google Scholar 

  72. Phongying S, S-i A, Chirachanchai S (2007) Direct chitosan nanoscaffold formation via chitin whiskers. Polymer 48:393–400

    Article  CAS  Google Scholar 

  73. Lertwattanaseri T, Ichikawa N, Mizoguchi T et al (2009) Microwave technique for efficient deacetylation of chitin nanowhiskers to a chitosan nanoscaffold. Carbohydr Res 344:331–335

    Article  CAS  Google Scholar 

  74. Wongpanit P, Sanchavanakit N, Pavasant P et al (2007) Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges. Eur Polym J 43:4123–4135

    Article  CAS  Google Scholar 

  75. Ang-atikarnkul P, Watthanaphanit A, Rujiravanit R (2014) Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties. Compos Sci Technol 96:88–96

    Article  CAS  Google Scholar 

  76. Watthanaphanit A, Supaphol P, Tamura H et al (2008) Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J Appl Polym Sci 110:890–899

    Article  CAS  Google Scholar 

  77. Junkasem J, Rujiravanit R, Supaphol P (2006) Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning. Nanotechnology 17:4519–4528

    Article  CAS  Google Scholar 

  78. Ji, Wolfe, Rodriguez, et al. (2012) Preparation of chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydr Polym 87:7

    Google Scholar 

  79. Naseri N, Algan C, Jacobs V et al (2014) Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15

    Article  CAS  Google Scholar 

  80. Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–665

    Article  CAS  Google Scholar 

  81. Tzoumaki MV, Moschakis T, Biliaderis CG (2010) Metastability of nematic gels made of aqueous chitin nanocrystal dispersions. Biomacromolecules 11:175–181

    Article  CAS  Google Scholar 

  82. Tzoumaki MV, Moschakis T, Kiosseoglou V et al (2011) Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocolloids 25:1521–1529

    Article  CAS  Google Scholar 

  83. Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5:1046–1051

    Article  CAS  Google Scholar 

  84. Zhang X, Huang J, Chang PR et al (2010) Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer 51:4398–4407

    Article  CAS  Google Scholar 

  85. Yamamoto Y, Nishimura T, Saito T et al (2010) CaCO3/chitin-whisker hybrids: formation of CaCO3 crystals in chitin-based liquid-crystalline suspension. Polym J 42:583–586

    Article  CAS  Google Scholar 

  86. Araki J, Yamanaka Y, Ohkawa K (2012) Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym J 44:713–717

    Article  CAS  Google Scholar 

  87. Ma B, Qin A, Li X et al (2014) Structure and properties of chitin whisker reinforced chitosan membranes. Int J Biol Macromol 64:341–346

    Article  CAS  Google Scholar 

  88. Ma B, Qin A, Li X et al (2014) Bioinspired design and chitin whisker reinforced chitosan membrane. Mater Lett 120:82–85

    Article  CAS  Google Scholar 

  89. Pereira AGB, Muniz EC, Hsieh Y-L (2014) Chitosan-sheath and chitin-core nanowhiskers. Carbohydr Polym 107:158–166

    Article  CAS  Google Scholar 

  90. Hariraksapitak P, Supaphol P (2010) Preparation and properties of α-chitin-whisker-reinforced hyaluronan-gelatin nanocomposite scaffolds. J Appl Polym Sci 117:3406–3418

    CAS  Google Scholar 

  91. Ifuku S, Morooka S, Morimoto M et al (2010) Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 11:1326–1330

    Article  CAS  Google Scholar 

  92. Ifuku S, Nogi M, Abe K et al (2009) Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells. Biomacromolecules 10:1584–1588

    Article  CAS  Google Scholar 

  93. Chen C, Li D, Hu Q et al (2014) Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells. Mater Des 56:1049–1056

    Article  CAS  Google Scholar 

  94. Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr Polym 79:1046–1051

    Article  CAS  Google Scholar 

  95. Hatanaka D, Yamamoto K, J-i K (2014) Preparation of chitin nanofiber-reinforced carboxymethyl cellulose films. Int J Biol Macromol 69:35–38

    Article  CAS  Google Scholar 

  96. Schiffman JD, Stulga LA, Schauer CL (2009) Chitin and chitosan: Transformations due to the electrospinning process. Polym Eng Sci 49:1918–1928

    Article  CAS  Google Scholar 

  97. Noh HK, Lee SW, Kim J-M et al (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934–3944

    Article  CAS  Google Scholar 

  98. Min B-M, Lee SW, Lim JN et al (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142

    Article  CAS  Google Scholar 

  99. Deng Q, Li J, Yang J et al (2014) Optical and flexible Π± -chitin nanofibers reinforced poly(vinyl alcohol) (PVA) composite film: fabrication and property. Compos A 67:55–60

    Article  CAS  Google Scholar 

  100. Lu Y, Sun Q, She X et al (2013) Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydr Polym 98:1497–1504

    Article  CAS  Google Scholar 

  101. Ifuku S, Shervani Z, Saimoto H (2013) Preparation of chitin nanofibers and their composites. In: Biopolymer nanocomposites, Wiley, pp 11–31

    Google Scholar 

  102. Nogi M, Kurosaki F, Yano H et al (2010) Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydr Polym 81:919–924

    Article  CAS  Google Scholar 

  103. Ifuku S, Nomura R, Morimoto M et al (2011) Preparation of chitin nanofibers from mushrooms. Materials 4:1417–1425

    Article  CAS  Google Scholar 

  104. Mushi NE, Butchosa N, Salajkova M et al (2014) Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydr Polym 112:255–263

    Article  CAS  Google Scholar 

  105. Salaberria AM, Fernandes SCM, Diaz RH et al (2015) Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydr Polym 116:286–291

    Article  CAS  Google Scholar 

  106. Salaberria AM, Labidi J, Fernandes SCM (2014) Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem Eng J 256:356–364

    Article  CAS  Google Scholar 

  107. Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from riftia tubes and Poly(caprolactone). Macromolecules 35:2190–2199

    Article  CAS  Google Scholar 

  108. Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34:6527–6530

    Article  CAS  Google Scholar 

  109. Nata IF, Wang SS-S, Wu T-M et al (2012) β-chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydr Polym 90:1509–1514

    Article  CAS  Google Scholar 

  110. Nata IF, Wu T-M, Chen J-K et al (2014) A chitin nanofibril reinforced multifunctional monolith poly(vinyl alcohol) cryogel. J Mater Chem B 2:4108

    Article  CAS  Google Scholar 

  111. Zhong C, Kapetanovic A, Deng Y et al (2011) A chitin nanofiber ink for airbrushing, replica molding, and microcontact printing of self-assembled macro-, micro-, and nanostructures. Adv Mater (FRG) 23:4776–4781

    Article  CAS  Google Scholar 

  112. Hassanzadeh P, Kharaziha M, Nikkhah M et al (2013) Chitin nanofiber micropatterned flexible substrates for tissue engineering. J Mater Chem B 1:4217–4224

    Article  CAS  Google Scholar 

  113. Zhong C, Cooper A, Kapetanovic A et al (2010) A facile bottom-up route to self-assembled biogenic chitin nanofibers. Soft Matter 6:5298

    Article  CAS  Google Scholar 

  114. Cooper A, Zhong C, Kinoshita Y et al (2012) Self-assembled chitin nanofiber templates for artificial neural networks. J Mater Chem 22:3105

    Article  CAS  Google Scholar 

  115. Sriupayo J, Supaphol P, Blackwell J et al (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62:130–136

    Article  CAS  Google Scholar 

  116. Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112

    Article  CAS  Google Scholar 

  117. João CFC, Silva JC, Borges JP (2015) Chitin based Nanocomposites: Biomedical Applications. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites. Springer, India, p 576

    Google Scholar 

  118. Ding F, Deng H, Du Y et al (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6:9477–9493

    Article  CAS  Google Scholar 

  119. Fan Y, Fukuzumi H, Saito T et al (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50:69–76

    Article  CAS  Google Scholar 

  120. Ifuku S, Ikuta A, Izawa H et al (2014) Control of mechanical properties of chitin nanofiber film using glycerol without losing its characteristics. Carbohydr Polym 101:714–717

    Article  CAS  Google Scholar 

  121. Shams MI, Ifuku S, Nogi M et al (2011) Fabrication of optically transparent chitin nanocomposites. Appl Phys A 102:325–331

    Article  CAS  Google Scholar 

  122. Ji Y, Liang K, Shen X et al (2014) Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr Polym 101:68–74

    Article  CAS  Google Scholar 

  123. Zhou C, Shi Q, Guo W et al (2013) Electrospun Bio-Nanocomposite Scaffolds for Bone Tissue Engineering by Cellulose Nanocrystals Reinforcing Maleic Anhydride Grafted PLA. ACS Appl Mater Interfaces 5:3847–3854

    Article  CAS  Google Scholar 

  124. Watthanaphanit A, Supaphol P, Tamura H et al (2010) Wet-spun alginate/chitosan whiskers nanocomposite fibers: Preparation, characterization and release characteristic of the whiskers. Carbohydr Polym 79:9-9

    Article  CAS  Google Scholar 

  125. Yudin VE, Dobrovolskaya IP, Neelov IM et al (2014) Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydr Polym 108:176–182

    Article  CAS  Google Scholar 

  126. Valo H, Arola S, Laaksonen P et al (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77

    Article  CAS  Google Scholar 

  127. Heath L, Zhu L, Thielemans W (2013) Chitin Nanowhisker Aerogels. ChemSusChem 6:537–544

    Article  CAS  Google Scholar 

  128. Tsutsumi Y, Koga H, Qi Z-D et al (2014) Nanofibrillar chitin aerogels as renewable base catalysts. Biomacromolecules 15:4314–4319

    Article  CAS  Google Scholar 

  129. Belamie E, Boltoeva MY, Yang K et al (2011) Tunable hierarchical porosity from self-assembled chitin–silica nano-composites. J Mater Chem 21:16997

    Article  CAS  Google Scholar 

  130. Chatrabhuti S, Chirachanchai S (2013) Single step coupling for multi-responsive water-based chitin/chitosan magnetic nanoparticles. Carbohydr Polym 97:441–450

    Article  CAS  Google Scholar 

  131. Galateanu B, Bunea M-C, Stanescu P et al (2015) In Vitro studies of bacterial cellulose and magnetic nanoparticles smart nanocomposites for efficient chronic wounds healing. Stem Cells Int 2015:10

    Article  Google Scholar 

  132. Malho J-M, Heinonen H, Kontro I et al (2014) Formation of ceramophilic chitin and biohybrid materials enabled by a genetically engineered bifunctional protein. Chem Commun 50:7348–7351

    Article  CAS  Google Scholar 

  133. Aspler J, Bouchard J, Hamad W et al (2013) Review of nanocellulosic products and their applications. In: Biopolymer Nanocomposites, Wiley, pp 461–508

    Google Scholar 

  134. Lee K-Y, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Article  CAS  Google Scholar 

  135. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192

    Article  CAS  Google Scholar 

  136. Wu Q, Henriksson M, Liu X et al (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8:3687–3692

    Article  CAS  Google Scholar 

  137. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  138. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620

    Article  CAS  Google Scholar 

  139. Lee K-Y, Tang M, Williams CK et al (2012) Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Compos Sci Technol 72:1646–1650

    Article  CAS  Google Scholar 

  140. Martins IMG, Magina SP, Oliveira L et al (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168

    Article  CAS  Google Scholar 

  141. Wan YZ, Luo H, He F et al (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217

    Article  CAS  Google Scholar 

  142. Trovatti E, Oliveira L, Freire CSR et al (2010) Novel bacterial cellulose–acrylic resin nanocomposites. Compos Sci Technol 70:1148–1153

    Article  CAS  Google Scholar 

  143. Hassanzadeh P, Sun W, de Silva JP et al (2014) Mechanical properties of self-assembled chitin nanofiber networks. J Mater Chem B 2:2461–2466

    Article  CAS  Google Scholar 

  144. Rizvi R, Cochrane B, Naguib H et al (2011) Fabrication and characterization of melt-blended polylactide-chitin composites and their foams. J Cell Plast 47:283–300

    Google Scholar 

  145. Wang B, Li J, Zhang J et al (2013) Thermo-mechanical properties of the composite made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and acetylated chitin nanocrystals. Carbohydr Polym 95:100–106

    Article  CAS  Google Scholar 

  146. Nair KG, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4:666–674

    Article  CAS  Google Scholar 

  147. Nair KG, Dufresne A, Gandini A et al (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4:1835–1842

    Article  CAS  Google Scholar 

  148. Li X, Li X, Ke B et al (2011) Cooperative performance of chitin whisker and rectorite fillers on chitosan films. Carbohydr Polym 85:747–752

    Article  CAS  Google Scholar 

  149. Rubentheren V, Ward TA, Chee CY et al (2015) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387

    Article  CAS  Google Scholar 

  150. Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79B:245–253

    Article  CAS  Google Scholar 

  151. Zimmermann KA, LeBlanc JM, Sheets KT et al (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49

    Article  CAS  Google Scholar 

  152. Tazi N, Zhang Z, Messaddeq Y et al (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61

    Article  CAS  Google Scholar 

  153. Zhijiang C, Chengwei H, Guang Y (2012) Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr Polym 87:1073–1080

    Article  CAS  Google Scholar 

  154. Mathew AP, Oksman K, Pierron D et al (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298

    Article  CAS  Google Scholar 

  155. Baptista AC, Martins JI, Fortunato E et al (2011) Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosens Bioelectron 26:2742–2745

    Article  CAS  Google Scholar 

  156. Franco PQ, João CFC, Silva JC et al (2012) Electrospun hydroxyapatite fibers from a simple sol–gel system. Mater Lett 67:233–236

    Article  CAS  Google Scholar 

  157. Baptista AC, Ferreira I, Borges JP (2013) Electrospun fibers in composite materials for medical applications. J Compos Biodegrad Polym 1:56–65

    Article  Google Scholar 

  158. Baptista AC, Botas AM, Almeida APC et al (2015) Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers. Opt Mater 39:278–281

    Article  CAS  Google Scholar 

  159. Xin S, Li Y, Li W et al (2012) Carboxymethyl chitin/organic rectorite composites based nanofibrous mats and their cell compatibility. Carbohydr Polym 90:1069–1074

    Article  CAS  Google Scholar 

  160. Shalumon KT, Binulal NS, Selvamurugan N et al (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77:7-7

    Article  CAS  Google Scholar 

  161. Bajpai SK, Pathak V, Soni B (2015) Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing. Int J Biol Macromol 79:76–85

    Article  CAS  Google Scholar 

  162. Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197

    Article  CAS  Google Scholar 

  163. Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946

    Article  CAS  Google Scholar 

  164. Mauricio MR, da Costa PG, Haraguchi SK et al (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. Carbohydr Polym 115:715–722

    Article  CAS  Google Scholar 

  165. Madhumathi K, Sudheesh Kumar PT, Abhilash S et al (2009) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. Journal of materials science. Mater Med 21:807–813

    Article  CAS  Google Scholar 

  166. Kumar PTS, Abhilash S, Manzoor K et al (2010) Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym 80:761–767

    Article  CAS  Google Scholar 

  167. Muzzarelli RAA, Morganti P, Morganti G et al (2007) Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 70:274–284

    Article  CAS  Google Scholar 

  168. Yoo CR, Yeo I-S, Park KE et al (2008) Effect of chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal keratinocytes. Int J Biol Macromol 42:324–334

    Article  CAS  Google Scholar 

  169. Shelma R, Paul W, Sharma CP (2008) Chitin nanofibre reinforced thin chitosan films for Wound healing application. Trends Biomater Artif Organs 22:111–115

    Google Scholar 

  170. Ifuku S, Saimoto H, Azuma K, et al. (2015) Preparation of Chitin Nanofibers for Biomedical Application. (null). CRC Press, 169–179

    Google Scholar 

  171. Lin N, Huang J, Chang PR et al (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B Biointerfaces 85:270–279

    Article  CAS  Google Scholar 

  172. Li S, Guo ZP, Wang CY et al (2013) Flexible cellulose based polypyrrole-multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. J Mater Chem A 1:14300–14305

    Article  CAS  Google Scholar 

  173. Yoon H (2013) Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3:524

    Article  CAS  Google Scholar 

  174. Hu W, Chen S, Yang Z et al (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457

    Article  CAS  Google Scholar 

  175. Lin Z, Guan Z, Huang Z (2013) New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization. Ind Eng Chem Res 52:2869–2874

    Article  CAS  Google Scholar 

  176. Valentini L, Cardinali M, Fortunati E et al (2013) A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater Lett 105:4–7

    Article  CAS  Google Scholar 

  177. Na NP (2008) Chitin nanowhisker and chitosan nanoparticles in protein immobilization for biosensor applications. J Met Mater Miner 18:73–77

    Google Scholar 

  178. Stephan AM, Kumar TP, Kulandainathan MA et al (2009) Chitin-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. J Phys Chem B 113:1963–1971

    Article  CAS  Google Scholar 

  179. Aramwit P, Bang N (2014) The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnol 14:104

    Article  CAS  Google Scholar 

  180. Morganti P, Muzzarelli RAA, Muzzarelli C (2006) Multifunctional use of innovative chitin nanofibrils for skin care. J Appl Cosmetol 24:105–114

    Google Scholar 

  181. Morganti P, Morganti G, muzzarelli RAA et al (2007) Chitin nanofibrils: a natural compound for innovative cosmeceuticals. Cosmet Toilet 122:81–88

    CAS  Google Scholar 

  182. Morganti P, Fabrizi G, Palombo P et al (2008) Chitin-nanofibrils: a new active cosmetic carrier. J Appl Cosmetol 26:113–128

    Google Scholar 

  183. Morganti P, Morganti G (2008) Chitin nanofibrils for advanced cosmeceuticals. Clin Dermatol 26:334–340

    Article  Google Scholar 

  184. Morganti P (2010) Chitin nanofibrils for cosmetic delivery. Cosmet Toilet 125:36–39

    CAS  Google Scholar 

  185. Morganti P (2011) Chitin nanofibrils and their derivatives as cosmeceuticals. In: Kim S-K (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications, CRC Press, New York

    Google Scholar 

  186. Morganti P (2015) Chitin-nanofibrils in skin treatment. J Appl Cosmetol 27:251–270

    Google Scholar 

  187. Biagini G, Zizzi A, Giantomassi F (2008) Cutaneous absorption of nanostructured chitin associated with natural synergistic molecules (lutein). J Appl Cosmetol 26:69–80

    CAS  Google Scholar 

  188. Hatakeyama H, Kato N, Nanbo T et al (2012) Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. J Mater Sci 47:7254–7261

    Article  CAS  Google Scholar 

  189. Gabr MH, Phong NT, Abdelkareem MA et al (2013) Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nano-cellulose biocomposites. Cellulose 20:819–826

    Article  CAS  Google Scholar 

  190. Ma H, Burger C, Hsiao BS et al (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12:970–976

    Article  CAS  Google Scholar 

  191. Huang Y, He M, Lu A et al (2015) Hydrophobic modification of chitin whisker and its potential application in structuring oil. Langmuir 31:1641–1648

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work work was partially funded by FEDER funds through the COMPETE 2020 Programme and National Funds through the Portuguese Foundation for Science and Technology (FCT - MEC) under the project UID/CTM/50025/2013. Carlos F. C. João and Ana C. Baptista also acknowledge FCT- MEC for SFRH/BD/80860/2011 and SFRH/BPD/104407/2014 grants, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

João, C.F.C., Baptista, A.C., Ferreira, I.M.M., Silva, J.C., Borges, J.P. (2016). Natural Nanofibres for Composite Applications. In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0234-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0234-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0232-8

  • Online ISBN: 978-981-10-0234-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics