Skip to main content

Glaciological Studies at Pasterze Glacier (Austria) Based on Aerial Photographs

  • Chapter
Book cover Monitoring and Modeling of Global Changes: A Geomatics Perspective

Abstract

This chapter describes and analyses glacier recession observed at Pasterze Glacier, Hohe Tauern Range, Austria, for the time period 2003–2009. Pasterze Glacier is the largest glacier of the entire Eastern Alps, and it is highly indicative of ongoing glacier melt in the Alps. We evaluated three glacier stages (2003, 2006 and 2009) and the glaciological changes between them. The quantitative analysis is based on aerial surveys carried out during the summer of these years. The photogrammetric workflow provided high resolution datasets, such as digital elevation models and orthophotos of each stage. We evaluated the extent, surface elevation, flow velocity field, supraglacial debris cover, and geomorphological changes at the glacier surface and the adjacent paraglacial environment. The main numerical results can be summarized as follows: the glacier covered 17.3 ± 0.1 km2 in 2009, the mean surface elevation change was −1.31 ± 0.07 m a−1 for the period 2003–2009, the glacier surface flow velocity in two test areas at the glacier tongue decelerated from 2003–2006 to 2006–2009 (−4 % and −31 %), and the debris cover of the glacier tongue increased from 63 % (2003) to 72 % (2009). We conclude that Pasterze Glacier is far from equilibrium and that its glacier tongue will turn into a large dead ice body in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abermann J, Lambrecht A, Fischer A, Kuhn M (2009) Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006). Cryosphere 3(2):205–215

    Article  Google Scholar 

  • Abermann J, Fischer A, Lambrecht A, Geist T (2010) On the potential of very high-resolution repeat DEMs in glacial and periglacial environments. Cryosphere 4(1):53–65

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP – historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 27:17–46

    Article  Google Scholar 

  • Avian M, Lieb GK, Kellerer-Pirklbauer A, Bauer A (2007) Variations of Pasterze Glacier (Austria) between 1994 and 2006 – combination of different data sets for spatial analysis. In: Proceedings of the 9th international symposium on high mountain remote sensing cartography, Graz, 2006. Grazer Schriften der Geographie und Raumforschung 43:79–88

    Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017

    Article  Google Scholar 

  • Baltsavias EP, Favey E, Bauder A, Bösch H, Pateraki M (2001) Digital surface modelling by airborne laser scanning and digital Photogrammetry for glacier monitoring. Photogramm Rec 17(98):243–273

    Article  Google Scholar 

  • Barry R, Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Beniston M, Diaz HF (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Global Planet Change 44(1–4):73–81

    Article  Google Scholar 

  • Benn DI, Evans DJA (2010) Glaciers and glaciation, 2nd edn. Hodder Arnold Publication, London

    Google Scholar 

  • Benn DI, Lehmkuhl F (2000) Mass balance and equilibrium-line altitudes of glaciers in high mountain environments. Quat Int 65–66:15–29

    Article  Google Scholar 

  • Bolch T, Buchroithner MF, Kunert A, Kamp U (2007) Automated delineation of debris-covered glaciers based on ASTER data. In: Gomarasca (ed) Geoinformation in Europe, Proceedings of the 27th Symposium of the EARSel. Millpress Science Publishers, pp 403–410

    Google Scholar 

  • Bollmann E, Klug C, Sailer R, Stötter J, Abermann J (2012) Quantifying rock glacier creep using airborne laser scanning: a case study from two rock glaciers in the Austrian Alps. In: Hinkel KM (ed) 10th International Conference on Permafrost. The Northern Publisher, Salekhard, Russia, pp 49–54

    Google Scholar 

  • Eder K, Würländer R, Rentsch H (2000) Digital photogrammetry for the new glacier inventory of Austria. In: International archives of photogrammetry and remote sensing, vol XXXIII, Part B4, Amsterdam, pp 254–261

    Google Scholar 

  • Fischer A (2011) Comparison of direct and geodetic mass balances on a multi-annual time scale. Cryosphere 5(1):107–124

    Article  Google Scholar 

  • Geilhausen M, Otto JC, Schrott L (2011) Geomorphic system analysis and paraglacial landform adjustment in two glacier forefields (Pasterze & Obersulzbachkees, Hohe Tauern, Austria). Geophys Res Abstr 13:EGU2011–EGU10496

    Google Scholar 

  • Goshtasby AA (2012) Image registration – principles, tools and methods. Advances in computer vision and pattern recognition. Springer, London, p 441

    Google Scholar 

  • Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46(1):150–160

    Article  Google Scholar 

  • Haeberli W, Huggel C, Paul F, Zemp M (2013a) Glacial responses to climate change. In: Treatise on geomorphology, vol 13. Academic, San Diego, pp 152–175

    Google Scholar 

  • Haeberli W, Paul F, Zemp M (2013b) Vanishing glaciers in the European Alps. In: Fate of Mountain glaciers in the anthropocene. Pontifical Academy of Sciences, Scripta Varia, 118:1–9

    Google Scholar 

  • Heid T, Kääb A (2012) Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 6(2):467–478

    Article  Google Scholar 

  • Höck V, Pestal G (1994) Geological map of Austria 1:50.000, GK sheet 153 “Grossglockner”. Geological Survey of Austria, Vienna

    Google Scholar 

  • Huss M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7(3):877–887

    Article  Google Scholar 

  • Inoue J (1977) Mass budget of the Khumbu Glacier. Seppyo 39:15–19

    Google Scholar 

  • Kääb A (2005) Remote sensing of mountain glaciers and permafrost creep, vol 48, Schriftenreihe Physische Geographie. Geographisches Institut der Universität Zürich, Switzerland

    Google Scholar 

  • Karimi N, Farokhnia A, Karimi L, Eftekhari M, Ghalkhani H (2012) Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran). Cold Reg Sci Technol 71:73–83

    Article  Google Scholar 

  • Kaufmann V (2013) http://www.geoimaging.tugraz.at/viktor.kaufmann/Pasterze_2003-2006-2009_2m.gif. Accessed 14 Dec 2013

  • Kaufmann V, Ladstädter R (2003) Quantitative analysis of rock glacier creep by means of digital photogrammetry using multi-temporal aerial photographs: two case studies in the Austrian Alps. In: Permafrost. Proceedings of the 8th international conference on permafrost, Zurich, vol 1. A.A. Balkema Publishers, pp 525–530

    Google Scholar 

  • Kaufmann V, Plösch R (2000) Mapping and visualization of the retreat of two cirque glaciers in the Austrian Hohe Tauern National Park. In: International archives of photogrammetry and remote sensing, vol XXXIII, Part B4, Amsterdam, pp 446–453

    Google Scholar 

  • Kaufmann V, Kellerer-Pirklbauer A, Kenyi LW (2008) Gletscherbewegungsmessung mittels Satellitengestützter Radar-Interferometrie: Die Pasterze (Glocknergruppe, Hohe Tauern, Kärnten). Z Gletscherk Glazialgeol 42(1):85–104

    Google Scholar 

  • Kellerer-Pirklbauer A (2008) The supraglacial debris system at the Pasterze Glacier, Austria: spatial distribution, characteristics and transport of debris. Z Gemorphol, Supplementar Issue 52(1):3–25

    Google Scholar 

  • Kellerer-Pirklbauer A (2009) The use of GPS and DGPS for glacier monitoring at the tongue of Pasterze Glacier between 2003 and 2008. In: Proceedings of the 4th symposium of the Hohe Tauern National Park for research in protected areas, Kaprun, Austria, Sept 2009, pp 163–167

    Google Scholar 

  • Kellerer-Pirklbauer A, Lieb GK, Avian M, Gspurning J (2008) The response of partially debris-covered valley glaciers to climate change: the example of the Pasterze Glacier (Austria) in the period 1964 to 2006. Geogr Ann Ser A Phys Geogr 90(A/4):269–285

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Lieb GK, Avian M, Carrivick J (2012) Climate change and rock fall events in high mountain areas: numerous and extensive rock falls in 2007 at Mittlerer Burgstall, central Austria. Geogr Ann Ser A Phys Geogr 94(1):59–78

    Article  Google Scholar 

  • Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann Glaciol 46(1):177–184

    Article  Google Scholar 

  • Lieb GK (2007) Southeastern and Central Austria Field Guide of the HMRSC-IX (2006) post-symposium excursion. In: Proceedings of the 9th international symposium on high mountain remote sensing cartography, Graz, 2006. Grazer Schriften der Geographie und Raumforschung 43:257–292

    Google Scholar 

  • Mattson LE, Gardner JS, Young GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Panjab, Himalaya. IAHS Publ 218:289–269

    Google Scholar 

  • Oerlemans J (2001) Glaciers and climate change. Swets & Zeitlinger BV, Lisse

    Google Scholar 

  • Østrem G (1959) Ice melting under a thin layer of moraine and the existence of ice cores in moraine ridges. Geogr Ann 41A:228–230

    Google Scholar 

  • Paschinger H (1969) Die Pasterze in den Jahren 1924 bis 1968. Wiss Alpenvereinshefte 21:267–290

    Google Scholar 

  • Patzelt G (1985) Glacier advances in the Alps 1965 to 1980. Z Gletscherk Glazialgeol 21(1–2):403–407

    Google Scholar 

  • Paul F, Huggel C, Kääb A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens Environ 89:510–518

    Article  Google Scholar 

  • Schöner W, Auer I, Böhm R (2000) Klimaänderung und Gletscherverhalten in den Hohen Tauern. Salzburger Geogr Arb 36:97–113

    Google Scholar 

  • Slupetzky H, Wiesenegger H (2005) Glazialhydrologische Aspekte des Jahres 2003 im “Hohe Tauern Einzugsgebiet”der Salzach. Mitteilungsblatt Hydrographischen Dienstes Österr 83:61–81

    Google Scholar 

  • Span N, Fischer A, Kuhn M, Massimo M, Butschek M (2005) Radarmessungen der Eisdicke Österreichischer Gletscher. Band 1: Messungen 1995 bis 1998, Österreichische Beiträge zu Meteorologie und Geophysik 33

    Google Scholar 

  • TIRIS (2014) https://portal.tirol.gv.at/LBAWeb/luftbilduebersicht.show. Accessed 23 May 2014

  • Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wakonigg H, Lieb GK (1996) Die Pasterze und ihre Erforschung im Rahmen der Gletschermessungen. Wiss Nationalpark Hohe Tauern Kärnten Kärntner Nationalpark-Schriften 8:99–115

    Google Scholar 

  • Würländer R, Eder K, Geist T (2004) High quality DEMs for glacier monitoring – image matching versus laser scanning. In: ISPRS archives, vol XXXV, Part B7, Istanbul, pp 753–758

    Google Scholar 

  • ZAMG (2013) http://www.zamg.ac.at/cms/de/klima/informationsportal-klimawandel/daten-download/gletscherdaten. Accessed 6 Nov 2013

  • Zemp M (2006) Glaciers and climate change – spatio-temporal analysis of glacier fluctuations in the European Alps after 1850. PhD thesis, University of Zurich, 201 p

    Google Scholar 

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33(13):L13504. doi:10.1029/2006GL026319

    Article  Google Scholar 

  • Zemp M, Thibert E, Huss M, Stumm D, Rolstad Denby C, Nuth C, Nussbaumer SU, Moholdt G, Mercer A, Mayer C, Joerg PC, Jansson P, Hynek B, Fischer A, Escher-Vetter H, Elvehøy H, Andreassen LM (2013) Reanalysing glacier mass balance measurement series. Cryosphere 7(2):1227–1245

    Article  Google Scholar 

  • Zuo Z, Oerlemans J (1997) Numerical modelling of the historic front variation and the future behavior of the Pasterze glacier, Austria. Ann Glaciol 24:234–241

    Google Scholar 

Download references

Acknowledgments

The aerial photographs of 2003 were made available by Heinz Slupetzky and the Hydrological Service of the Regional Government of Salzburg. Photogrammetric work was financially supported by the Austrian Federal Ministry of Science and Research and the Salzburg Hydrological Service. The aerial photographs of 2009 were provided free of charge by the Department of Geoinformation of the Regional Government of Tyrol (TIRIS). Field campaigns at Pasterze Glacier were supported by the project ‘ALPCHANGE – Climate change and impacts in southern Austrian alpine regions’ funded by the Austrian Science Fund (FWF) through project FWF P18304-N10 and by the Austrian Alpine Club (OeAV) within the framework of the annual glaciological surveys. VERBUND-Austrian Hydro Power provided meteorological data from the automatic weather station AWS-MA. An anonymous reviewer is very much thanked for his constructive criticism on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Kaufmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaufmann, V., Kellerer-Pirklbauer, A., Lieb, G.K., Slupetzky, H., Avian, M. (2015). Glaciological Studies at Pasterze Glacier (Austria) Based on Aerial Photographs. In: Li, J., Yang, X. (eds) Monitoring and Modeling of Global Changes: A Geomatics Perspective. Springer Remote Sensing/Photogrammetry. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9813-6_9

Download citation

Publish with us

Policies and ethics