Skip to main content

Nanoparticles Containing a Copper Chelator: A Possible Instrument for Radiation Protection

  • Conference paper
  • First Online:
  • 1164 Accesses

Abstract

Nanotechnology is considered as an emerging technology with great potential in a wide range of applications. In addition to various industrial uses, several innovations are foreseen in biotechnology, medicine and medical technology. The application of nanotechnology to medicine also provides an innovative approach that can enhance the effectiveness of radiotherapies or radioprotection. The aim of the present study was to investigate the radioprotective effect of neocuproine-nanodiamond nanoparticles on gamma irradiated human hepatocellular carcinoma cells. We revealed a significant increase in the radioprotection efficacy against gamma irradiation of HepG2 cells pre-exposed to nanodiamonds or nanodiamonds-neocuproine nanoparticles. The results showed that the protective effect of nanoparticles is connected with decreasing free radicals released during the irradiation and with cytokinesis-blocked micronucleous formation, does protecting cells from cyto- and genotoxic effect of gamma irradiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deep K, Venugopal A, Shrikant A (2013) Transl Cancer Res 2:330

    Google Scholar 

  2. Baker CH (2014) JSM Nanotechnol Nanomed 2:1019

    Google Scholar 

  3. Jimmie C, Nelson H, Ferguson A, Kupelian P, Seal S, Jenkins W, Baker C (2010) Nanomed Nanotechnol Biol Med 6:698

    Article  Google Scholar 

  4. Rzigalinski BA, Meehan K, Davis RM, Xu Y, Miles WC, Cohen CA (2006) Nanomedicine 1:399

    Article  Google Scholar 

  5. Kaplan HS (1960) Bull N Y Acad Med 36:649

    Google Scholar 

  6. Rahman K (2007) Clin Interv Aging 2:219

    Google Scholar 

  7. Lobo V, Patil A, Phatak A, Chandra N (2010) Pharmacogn Rev 4:118

    Article  Google Scholar 

  8. Henle ES, Linn SJ (1997) Biol Chem 272:19095

    Article  Google Scholar 

  9. Sung-Ho C, Jen-Kun L, Shing-Hwa L, Yu-Chih L, Shoei-Yn LS (2008) Toxicol Sci 102:138

    Google Scholar 

  10. Bruskov V, Malakhova L, Masalimov Z, Chernikov A (2002) Nucleic Acids Res 30:1354

    Article  Google Scholar 

  11. Nazeem S, Asfar SA, Sarmad H, Satheesh K (2008) Austral – Asian J Cancer 7:65

    Google Scholar 

  12. Hunter RJ, Preedy VR (2011) Nanomedicine in health and disease. Science Publishers, Enfield

    Google Scholar 

  13. Chien-Min S (2011) Compositions and methods for providing ultraviolet radiation protection. Patent: US 20110286943A1

    Google Scholar 

  14. Mamotyuk JM, Gusakova VA, Uzlenkova NJ, Revenkova SY, Nenyukova OV, Yivashchenko VN, Tsiganok RY, Borodyin VG (2009) Ukrayins’kij Radyiologyichnij Zhurnal 17:65

    Google Scholar 

  15. Ivanova L, Popov C, Kolev I, Shivachev B, Karadjov J, Tarassov M, Kulisch W, Reithmaier JP, Apostolova MD (2011) Diam Relat Mater 20:165

    Article  ADS  Google Scholar 

  16. Mosmann TJ (1983) Immunol Methods 65:55

    Article  Google Scholar 

  17. Lehnert S (2007) Biomolecular action of ionizing radiation. Taylor & Francis Group, New York

    Book  Google Scholar 

  18. Pejchal J, Vasilieva V, Hristozova M, Vilasová Z, Vávrová J, Alyakov M, Tichý A, Zárybnická L, Šinkorová Z, Tambor V, Kubelková K, Dresler J (2011) Mil Med Sci Lett 80:28

    Google Scholar 

  19. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeierf E (2003) Mutat Res 534:65

    Article  Google Scholar 

  20. IAEA (2001) Cytogenetic analysis for radiation dose assessment: a manual, Technical reports series. IAEA, Vienna

    Google Scholar 

  21. Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, Alcocer-González JM, Miranda-Hernández DF, Tamez-Guerra RS, Rodríguez-Padilla C (2010) J Exp Clin Canc Res. doi:10.1186/1756-9966-29-148

  22. Kim S, Ryu DY (2013) J Appl Toxicol 33:78

    Article  Google Scholar 

  23. Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy AC, Marques MR, Dafre AL, Farina M (2009) Free Radic Biol Med 47:449

    Article  Google Scholar 

  24. Martindale JL, Holbrook NJ (2002) J Cell Physiol 192:1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Apostolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Vasilieva, V.V., Alyakov, M., Apostolova, M.D. (2015). Nanoparticles Containing a Copper Chelator: A Possible Instrument for Radiation Protection. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_43

Download citation

Publish with us

Policies and ethics