Skip to main content

Ammonoid Intraspecific Variability

  • Chapter
  • First Online:
Book cover Ammonoid Paleobiology: From anatomy to ecology

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

Two main types of intraspecific variation can be distinguished in ammonoids, which are not mutually exclusive: continuous and discontinuous variation. Although many authors acknowledge or implicitly assume a large intraspecific variability is possible in shell shape, ornamentation and suture line, it has only been rarely studied quantitatively. Several potential biases need to be taken into account when studying intraspecific variation of fossil populations including paleoecological, taphonomic and collection biases. Intraspecific variation might be controlled both by genetic and environmental parameters, although both are difficult to separate in fossil samples. In ammonoids, a large part of intraspecific variation in morphology and size has been attributed to differences in growth rates and development. Taking intraspecific variation properly into account is not only of prime importance for taxonomy, but also for studies on biostratigraphy, paleobiogeography, ecology, paleobiology and evolution of ammonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DC, Collyer ML (2009) A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution Int J org Evolution 63:1143–1154

    Google Scholar 

  • Ager DV (1963) Principles of paleoecology. McGraw Hill, New York

    Google Scholar 

  • Aguirre-Urreta MB (1998) The ammonites Karakaschiceras and Neohoploceras (Valanginian Neocomitidae) from the Neuquen basin, west-central Argentina. J Paleontol 72:39–59

    Google Scholar 

  • Aguirre-Urreta MB, Riccardi AC (1988) Albian heteromorph ammonoids from southern Patagonia, Argentina. J Paleontol 62:598–614

    Google Scholar 

  • Andrew C, Howe P, Paul CRC, Donovan SK (2011) Epifaunal worm tubes on Lower Jurassic (Lower Lias) ammonites from Dorset. Proc Geol Assoc 122:34–46

    Google Scholar 

  • Arkell WJ (1957) Introduction to Mesozoic Ammonoidea. In: Moore RC (ed) Treatise on invertebrate paleontology, Part L, Mollusca 4, Cephalopoda-Ammonoidea. GSA and University of Kansas Press, L80–L100

    Google Scholar 

  • Arkhipkin A (1992) Reproductive system structure, development and function in cephalopods with a new general scale for maturity stages. J Northw Atl Fish Sci 12:63–74

    Google Scholar 

  • Arkhipkin AI (2004) Diversity in growth and longevity in short-lived animals: squid of the suborder Oegopsina. Mar Freshw Res 55:341–355

    Google Scholar 

  • Arkhipkin A, Laptikhovsky V (1994) Seasonal and interannual variability in growth and maturation of winter-spawning Illex argentinus (Cephalopoda, Ommastrephidae) in the Southwest Atlantic. Aquat Living Resour 7:221–232

    Google Scholar 

  • Arvesen JN, Schmitz TH (1970) Robust procedures for variance component problems using the jackknife. Biometrics 26:677–686

    Google Scholar 

  • Atrops F, Mélendez G (1993) Current trends in systematics of Jurassic Ammonoidea: the case of Oxfordian-Kimmeridgian perisphinctids from southern Europe. Geobios 26(Suppl 1):19–31. doi:http://dx.doi.org/10.1016/S0016-6995(06)80357-8

    Google Scholar 

  • Aubrecht R, Schlögl J (2011) Jurassic submarine troglobites: is there any link to the recent submarine cave fauna? Hydrobiologia 677:3–14

    Google Scholar 

  • Bailey RC, Byrnes J (1990) A new, old method for assessing measurement error in both univariate and multivariate morphometric studies. Syst Biol 39:124–130

    Google Scholar 

  • Barber WM (1957) The Lower Turonian ammonites of northeastern Nigeria. Bull Geol Surv Nigeria 26:1–86

    Google Scholar 

  • Bardhan S, Jana SK, Datta K (1993) Preserved color pattern of a phylloceratid ammonoid from the Jurassic Chari Formation, Kutch, India, and its functional significance. J Paleontol 67:140–143

    Google Scholar 

  • Bardhan S, Jana SK, Roy P (2010) Sexual dimorphism and polymorphism in a Callovian Phlycticeras (Ammonoidea) assemblage of Kutch, India. Geobios 43:269–281

    Google Scholar 

  • Baudouin C, Boselli P, Bert D (2011) The Oppeliidae of the Acanthicum zone (Upper Kimmeridgian) from Mount Crussol (Ardèche, France): ontogeny, variability and dimorphism of the genera Taramelliceras and Streblites (Ammonoidea). Rev Paleobiol 30:619–684

    Google Scholar 

  • Baudouin C, Bert D, Boselli P (2012) Preview on the ontogeny, variability and dimorphism of the genera Taramelliceras and Streblites (Ammonoidea) of the Acanthicum zone (Upper Kimmeridgian) from Mount Crussol (Ardèche, France). Bol Inst Fisiog Geol 82:19–21

    Google Scholar 

  • Bayer U, McGhee GR Jr (1984) Iterative evolution of middle Jurassic ammonite faunas. Lethaia 17:1–16

    Google Scholar 

  • Bayer U, McGhee GR Jr (1985) Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors. Ammonite replacements in the German Lower and Middle Jurassic. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles. Springer, Berlin

    Google Scholar 

  • Bert D (2004) Révision, etude systématique et evolution du genre Gregoryceras Spath, 1924 (Ammonoidea, Oxfordien). Ann Mus Hist Nat Nice 19:1–184

    Google Scholar 

  • Bert D (2009) Discussion, evolution and new interpretation of the Tornquistes Lemoine, 1910 (Pachyceratidae, Ammonitina) with the exemple of the verte-brale subzone sample (Middle Oxfordian) of southeastern France. Rev Paleobiol 28:471–489

    Google Scholar 

  • Bert D (2012) Phylogenetic relationships among the Hemihoplitidae Spath 1924 (Ammonoidea, Upper Barremian). Boletin del Instituto de Fisiografia y. Geologia 82:17–18

    Google Scholar 

  • Bert D (2013). Factors of intraspecific variability in ammonites, the example of Gassendiceras alpinum (d’Orbigny, 1850) (Hemihoplitidae, Upper Barremian). Annales de Paléontologie doi:10.1016/j.annpal.2013.11.007

    Google Scholar 

  • Bersac S, Bert D (2012a) Ontogenesis, variability and evolution of the Lower Greensand Deshayesitidae (Ammonoidea, Lower Cretaceous, Southern England): reinterpretation of literature data; taxonomic and biostratigraphic implications. Ann Mus Hist Nat Nice 27:197–270

    Google Scholar 

  • Bersac S, Bert D (2012b) Variability and evolution of the Deshayesitidae (Ammonoidea, Lower Aptian, Lower Cretaceous) from southern England. Bol Inst Fisiog Geol 82:27–30

    Google Scholar 

  • Bert D, Bersac S (2013) Evolutionary patterns-tested with cladistics-and pro-cesses in relation to palaeoenvironments of the Upper Barremian genus Gassendiceras (Ammonitina, Lower Cretaceous). Palaeontology 56:631–646

    Google Scholar 

  • Bert D, Delanoy G, Bersac S (2011) The dichotomus horizon: a new biochronologic unit of the Giraudi zone of the Upper Barremian of southeastern France, and considerations regarding the genus Imerites Rouchadze (Ammonoidea, Gassendiceratinae). Carnets Geol 2011/01: http://paleopolis.rediris.es/cg/CG2011_A01/

  • Beznosov NV, Mitta VV (1995) Polymorphism in the Jurassic ammonoids. Paleontol J 29:46–57

    Google Scholar 

  • Bhaumik D, Datta K, Jana-Sudipta K, Bardhan S (1993) Taxonomy and intraspecific variation of Macrocephalites formosus (Sowerby) from the Jurassic Chari Formation, Kutch, western India. J Geol Soc India 42:163–179

    Google Scholar 

  • Bissell A, Ferguson R (1975) The jackknife-toy, tool or two-edged weapon? The Statistician:79–100

    Google Scholar 

  • Blake JF (1878) On the measurements of curves formed by cephalopods and other mollusks. Philsoph Mag 5:241–262

    Google Scholar 

  • Boletzky Sv (1974) Effets de la sous-nutrition prolongée sur le développement de la coquille de Sepia officinalis L. (Mollusca, Cephalopoda). Bull Soc Zool Fr 99:667–673

    Google Scholar 

  • Boletzky Sv (2003) Biology of early life stages in cephalopod molluscs. Adv Mar Biol 44:143–203

    Google Scholar 

  • Bonnot A, Marchand D, Neige P (1999) Les Oppeliidae (Ammonitina) de l’horizon à Collotiformis (Callovien supérieur, zone à Athleta) de la région Dijonnaise (Côte-d’Or, France). Annales de Paléontologie 85:241–263

    Google Scholar 

  • Bookstein FL, Ward PD (2013) A modified procrustes analysis for bilaterally symmetrical outlines, with an application to microevolution in Baculites. Paleobiology 39:214–234

    Google Scholar 

  • Boyle P, Ngoile M (1993) Population variation and growth in Loligo forbesi (Cephalopoda: Loliginidae) from Scottish waters. In: Okutani T, O’Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. Tokai University Press, Tokyo

    Google Scholar 

  • Boyle PR, von Boletzky S (1996) Cephalopod populations: definition and dynamics. Philos Trans R Soc B-Biol Sci 351(1343):985–1002. doi:10.2307/56291

    Google Scholar 

  • Brayard A, Escarguel G (2013) Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia 46:19–33

    Google Scholar 

  • Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the end-permian mass extinction. Science 325:1118–1121

    Google Scholar 

  • Brochwicz-Lewiński W, Rózak Z (1976) Some difficulties in recognition of sexual dimorphism in Jurassic perisphinctids (Ammonoidea). Acta Palaeontol Polonica 21:115–124

    Google Scholar 

  • Bucher H (1997) Caractères périodiques etmode de croissance des ammonites: Comparaison avec les gastéropodes. Geobios 30(Suppl 1):85–99

    Google Scholar 

  • Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Buckman SS (1887-1907) A monograph of the ammonites of the inferior oolite series. Palaeontogr Soc 40-61:1–456

    Google Scholar 

  • Bulmer MG (1980) The mathematical theory of quantitative genetics. Oxford Science Publications, Oxford

    Google Scholar 

  • Callomon JH (1963) Sexual dimorphism in Jurassic ammonites. Trans Leicester Lit Philos Soc 57:21–56

    Google Scholar 

  • Callomon J (1985) The evolution of the Jurassic ammonite family Cardioceratidae. Spec Pap Palaeontol 33:49–90

    Google Scholar 

  • Callomon JH (1988) Review of Matyja 1986. Cephalopod Newsletter 9:14–16

    Google Scholar 

  • Casey R (1961) A monograph of the Ammonoidea of the Lower Greensand, part II. Palaeontogr Soc Lond 493:45–118

    Google Scholar 

  • Casey R (1963) A monograph of the Ammonoidea of the Lower Greensand, part V. Palaeontogr Soc Lond 502:289–398

    Google Scholar 

  • Chandler R, Callomon J (2009) The inferior oolite at Coombe quarry, near Mapperton, Dorset, and a new Middle Jurassic ammonite faunal horizon, Aa-3b, Leioceras comptocostosum n. biosp. in the Scissum zone of the Lower Aalenian. Proc Dorset Nat Hist Archaeol Soc 130:99–132

    Google Scholar 

  • Charpy N, Thierry J (1976) Dimorphisme et polymorphisme chez Pachyceras Bayle (Ammonitina, Stephanocerataceae) du Callovien Supérieur (Jurassique Moyen). Haliotis 6:185–218

    Google Scholar 

  • Checa A, Company M, Sandoval J, Weitschat W (1996) Covariation of morpho-logical characters in the Triassic ammonoid Czekanowskites rieberi. Lethaia 29:225–235

    Google Scholar 

  • Chlupáč I, Turek V (1983) Devonian goniatites from the Barrandian area. Rozpr Ustred Ust Geol 46:1–15

    Google Scholar 

  • Clarke JM (1899) The Naples fauna (fauna with Manticoceras intumescens) in western New York. New York State Museum. Annu Rep Regents 50:31–161

    Google Scholar 

  • Clarke AH (1978) Polymorphism in marine mollusks and biome development. Smithson Contrib Zool 274:1–14

    Google Scholar 

  • Collyer ML, Adams DC (2013) Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix 24:75–83

    Google Scholar 

  • Contini D, Marchand D, Thierry J (1984) Reflexions sur la notion de genre et de sous-genre chez les Ammonites: exemples pris essentiellement dans le Jurassique moyen. Bull Soc Geol Fr 26:653–666

    Google Scholar 

  • Courville P (1993) Les formations marines et les faunes d’ammonites cénomaniennes et turoniennes (Crétacé supérieur) dans le Fosséde la Bénoué (Nigéria). Impacts des facteurs locaux et globaux sur les échanges fauniques à l’interface Téthys/ Atlantique Sud. Unpubl PhD Thesis, Univ de Dijon, p. 360

    Google Scholar 

  • Courville P (2011) Caractères ornementaux, disparité et diversité chez les Ammonitina: exemple des Kosmoceratinae (Stephanoceratoidea), Callovien moyen et supérieur (Jurassique moyen, Bassin parisien). C R Palevol 10:155–170

    Google Scholar 

  • Courville P, Crônier C (2003) Les hétérochronies du développement: un outil pour l’étude de la variabilité et des relations phylétiques: Exemple de Nigericeras, Ammonitina du Crétacé supérieur africain. C R Palevol 2:535–546

    Google Scholar 

  • Courville P, Crônier C (2005) Diversity or disparity in the Jurassic (Upper Callovian) Genus Kosmoceras (Ammonitina): a morphometric approach. J Paleontol 79:944–953

    Google Scholar 

  • Courville P, Lebrun P (2010) L’Albien (Crétacé) de la region de Troyes (Aube) et ses ammonites: Hoplitidae et Douvilleiceratidae. Fossiles 4:4–30

    Google Scholar 

  • Courville P, Thierry J (1993) Sous-espèces géographiques et/ou contrôle environnemental de la variabilité morphologique chez “Thomasitesgongilensis (Woods, 1911), (Ammonitina, Acanthocerataceae, Vascoceratinae) du Turonien inférieur de la Haute Bénoué (Nigéria). Geobios 26(Suppl 1):73–89

    Google Scholar 

  • Crick RR (1978) Morphological variations in the ammonite Scaphites of the Blue Hill member, Crlile Shale, Upper Cretaceous. Univ Kans Paleontol Contrib 88:1–30

    Google Scholar 

  • Dagys AS (2001) The ammonoid family Arctohungaritidae from the boreal Lower-Middle Anisian (Triassic) of arctic Asia. Rev Paleobiol 20:543–546

    Google Scholar 

  • Dagys AS, Weitschat W (1993a) Intraspecific variation in Boreal Triassic ammonoids. Geobios 26:107–109

    Google Scholar 

  • Dagys AS, Weitschat W (1993b) Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113–121

    Google Scholar 

  • Dagys AS, Bucher H, Weitschat W (1999) Intraspecific variation of Parasibirites kolymensis Bychkov (Ammonoidea) from the Lower Triassic (Spathian) of arctic Asia. Mitt aus dem Geol-Paläont Inst Universität Hamburg 83:163–178

    Google Scholar 

  • Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Davis RA, Landman NH, Dommergues J-L, Marchand D, Bucher H (1996) Mature modifications and dimorphism in ammonoid cephalopods. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • De Baets K, Klug C, Monnet C (2013a) Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:75–94

    Google Scholar 

  • De Baets K, Klug C, Korn D, Bartels C, Poschmann M (2013b) Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontogr A 299:1–113

    Google Scholar 

  • De Baets K, Keupp H, Klug C (2015a) Parasites of ammonoids. This volume

    Google Scholar 

  • De Baets K, Landman NH, Tanabe K (2015b) Ammonoid embryonic development. This volume

    Google Scholar 

  • De Beer G (1958) Evolution by natural selection: a centenary commemorative volume. Papers by Charles Darwin and Alfred Wallace. Cambridge University, Cambridge

    Google Scholar 

  • Delanoy G (1997) Biostratigraphie des faunes d’Ammonites à la limite Barrémien-Aptien dans la région d’Angles-Barrême-Castellane. Étude particulière de la Famille des Heteroceratidae Spath 1922 (Ancyloceratina, Ammonoidea). Ann Mus Hist Nat Nice 12:1–270

    Google Scholar 

  • Delanoy G, Ropolo P, Magnin A, Autran G, Poupon A, Gonnet R (1995) Sur le dimorphisme chez les Ancyloceratina (Ammonoidea) du Crétacé Inférieur. C R Acad Sci Ser IIa 321:537–543

    Google Scholar 

  • Dera G, Neige P, Dommergues J-L, Brayard A (2011) Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Glob Planet Change 78:92–105

    Google Scholar 

  • Diedrich C (2000) Faziesabhängige Schalenmorphologie des Großammoniten Puzosia dibleyi (Spath 1922) aus dem Puzosia-Event I (Ober-Cenoman) von Europa. Senckenb Lethaea 80:463–483

    Google Scholar 

  • Dietl G (1978) Die heteromorphen Ammoniten des Dogger. Stuttg Beitr Natur B 33:1–97

    Google Scholar 

  • Dietze V, Callomon JH, Schweigert G, Chandler RB (2005) The ammonite fauna and biostratigraphy of the Lower Bajocian (Ovale and Laeviuscula zones) of E Swabia (S Germany). Stuttg Beitr Natur B353:1–82

    Google Scholar 

  • Doguzhaeva L (1982) Rhythms of ammonoid shell secretion. Lethaia 15:385–394

    Google Scholar 

  • Dommergues J-L (1988) Can ribs and septa provide an alternative standard for age in ammonite ontogenetic studies? Lethaia 21:243–256

    Google Scholar 

  • Dommergues J-L, David B, Marchand D (1986) Les rélations ontogenèse-phylogenèse: applications paléontologiques. Geobios 19:335–356

    Google Scholar 

  • Dommergues J-L, Cariou E, Contini D, Hantzpergue P, Marchand D, Meister C, Thierry J (1989) Homéomorphies et canalisations évolutives: Le rôle de l’ontogenèse. Quelques exemples pris chez les Ammonites du Jurassique. Geobios 22:5–48

    Google Scholar 

  • Dommergues J-L, Montuire S, Neige P (2002) Size patterns through time: the case of the early Jurassic ammonite radiation. Paleobiology 28:423–434

    Google Scholar 

  • Dommergues E, Dommergues J-L, Dommergues C-H (2006) Deux espèces sous un même masque. Le point de vue paléontologique piégé par les coquilles de deux espèces européennes de Trivia (Mollusca, Gastropoda). Rev Paleobiol 25:775–790

    Google Scholar 

  • Donovan DT (1994) History of classification of Mesozoic ammonites. J Geol Soc 151:1035–1040

    Google Scholar 

  • Dzik J (1985) Typologic versus population concepts of chronospecies: implications for ammonite biostratigraphy. Acta Palaeontol Pol 30:71–92

    Google Scholar 

  • Dzik J (1990a). The concept of chronospecies in ammonites. In: Cecca F, Cresta S, Pallini G, Santantonio M (eds) Atti del Secondo Convegno Inter-nazionale Fossili, Evoluzione, Ambiente, Pergola 25-30 ottobre 1987 estratto, Pergola, Comitato Centenario Raffaele Piccinini

    Google Scholar 

  • Dzik J (1990b) The ammonite Acrochordiceras in the Triassic of Silesia. Acta Palaeontol Pol 35:49–65

    Google Scholar 

  • Dzik J (1994) Sexual dimorphism in the virgatitid ammonites. Palaeopelagos Spec Publ 1:129–141

    Google Scholar 

  • Ebbighausen V, Korn D (2007) Conch geometry and ontogenetic trajectories in the triangularly coiled Late Devonian ammonoid Wocklumeria and related genera. Neues Jahrb Geol Paläontol Abh 244:9–41

    Google Scholar 

  • Egojan VL (1969) Ammonites from the Clanseysian beds of the western Caucasus. Trud Krasnodar Fil Vses Neftegazov Nauchnoissledovatel’sk Inst 19:126–188 [in Russian]

    Google Scholar 

  • Elmi S, Benshili K (1987) Relations entre la structuration tectonique, la composition des peuplements et l’évolution; exemple du Toarcien du Moyen-Atlas méridional (Maroc). Boll Soc Paleontol Ital 26:47–62

    Google Scholar 

  • Erben HK (1950) Bemerkungen zu Anomalien mancher Anfangswindungen von Mimagoniatites fecundus (Barr.). Neues Jahrb Geol Paläont Mh:25–32

    Google Scholar 

  • Erben HK (1964) Die Evolution der ältesten Ammonoidea (Lieferung I). Neues Jahrb Geol Paläontol Abh 120:107–212

    Google Scholar 

  • Flessa KW, Kowalewski M (1994) Shell survival and time-averaging in nearshore and shelf environments: estimates from the radiocarbon literature. Lethaia 27:153–165

    Google Scholar 

  • Fernández-López S (1995) Taphonomie et interpretation des paléoenvironements. Géobios 18:137–154

    Google Scholar 

  • Fernández-López S (2000) Temas de Tafonomía. Departamento de Paleontología. Universidad Complutense de Madrid, Madrid

    Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Google Scholar 

  • Flessa KW, Cutler AH, Meldahl KH (1993) Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266–286

    Google Scholar 

  • Foote M, Miller AI (2007) Principles of paleontology. Freeman, New York

    Google Scholar 

  • Ford EB (1940) Polymorphism and taxonomy. In: Huxley JS (ed) The new systematics. Oxford University, Oxford

    Google Scholar 

  • Ford EB (1945) Polymorphism. Biol Rev 20:73–88

    Google Scholar 

  • Ford EB (1955) Polymorphism and taxonomy. Heredity 9:255–264

    Google Scholar 

  • Ford EB (1965) Genetic polymorphism. Faber and Faber, London

    Google Scholar 

  • Ford EB (1966) Genetic polymorphism. Proc R Soc B-Biol Sci 164:350–361

    Google Scholar 

  • Fürsich FT, Aberhan M (1990) Significance of time-averaging for palaeocommunity analysis. Lethaia 23:143–152

    Google Scholar 

  • Furnish WM, Knapp WD (1966) Lower Pennsylvanian fauna from eastern Kentucky; Part 1, Ammonoids. J Paleontol 40:296–308

    Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc B-Biol Sci 365:547–556

    Google Scholar 

  • Gangopadhyay TK, Bardhan S (2007) Ornamental polymorphism in Placenticeras kaffrarium (Ammonoidea; Upper Cretaceous of India): evolutionary implications. In: Landman N, Davis R, Mapes R (eds) Cephalopods present and past: new insights and fresh perspectives. Springer, Netherlands

    Google Scholar 

  • Göddertz B (1989) Unterdevonische hercynische Goniatiten aus Deutschland, Frankreich und der Türkei. Palaeontogr A 208:61–89

    Google Scholar 

  • Goodfriend GA (1986) Variation in land-snail shell form and size and its causes: a review. Syst Biol 35:204–223

    Google Scholar 

  • Grüneberg H, Bains GS, Berry BJ, Riles L, Smith C, Weiss R (1966) A search for genetic effects of high natural radioactivity in south India. Spec Rep Ser Med Res Counc 307:1–59

    Google Scholar 

  • Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclogae Geol Helv 94:321–328

    Google Scholar 

  • Guex J (2003) A generalization of Cope’s rule. Bull Soc Geol Fr 174:449–452

    Google Scholar 

  • Guex J, Koch A, O’Dogherty L, Bucher H (2003) A morphogenetic explanation of Buckman’s law of covariation. Bull Soc Geol Fr 174:603–606

    Google Scholar 

  • Haas O (1946) Intraspecific variation in, and ontogeny of, Prionotropis woollgari and Prionocyclus wyomingensis. Bull Am Mus Nat Hist 86(4):141–224

    Google Scholar 

  • Hallam A (1965) Environmental causes of stunting in living and fossil marine benthonic invertebrates. Palaeontology 8:132–155

    Google Scholar 

  • Hallgrímsson B, Hall BK (2005) Variation: a central concept in biology. Elsevier, Amsterdam

    Google Scholar 

  • Hammer Ø, Bucher H (2005) Buckman’s first law covariation-a case of proportionality. Lethaia 38:67–72

    Google Scholar 

  • Hammer Ø, Harper DAT (2006) Paleontological data analysis. Wiley-Blackwell, United Kingdom

    Google Scholar 

  • Hammer Ø, Bucher H (2006) Generalized ammonoid hydrostatics modelling, with application to Intornites and intraspecific variation in Amaltheus. Paleontol Res 10:91–96

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:A4

    Google Scholar 

  • Hengsbach R (1976) Über die Sutur-Assymetrie bei Cymbites laevigatus (Ammonoidea; Jura). Senckenb Lethaea 56:463–468

    Google Scholar 

  • Hengsbach R (1980) Über die Sutur-Asymmetrie bei Hecticoceras (Ammonoidea; Jura). Senckenb Lethaea 60:463–473

    Google Scholar 

  • Hengsbach R (1986) Zur Kenntnis der Asymmetrie der Sutur-Asymmetrie bei Ammoniten. Senckenb Lethaea 67:119–149

    Google Scholar 

  • Hewitt RA, Hurst JM (1977) Size changes in Jurassic liparoceratid ammonites and their stratigraphical and ecological significance. Lethaia 10:287–301

    Google Scholar 

  • Hewitt RA, Stait B (1988) Seasonal variation in septal spacing of Sepia officinalis and some Ordovician actinocerid nautiloids. Lethaia 21:383–394

    Google Scholar 

  • Hewitt RA, Checa A, Westermann GEG, Zaborski PM (1991) Chamber growth in ammonites inferred from colour markings and naturally etched surfaces of Cretaceous vascoceratids from Nigeria. Lethaia 24:271–287

    Google Scholar 

  • Hewitt RA, Westermann GEG, Checa A (1993) Growth rates of ammonites estimated from aptychi. Geobios 26(Suppl 1):203–208

    Google Scholar 

  • Hirano H (1978) Phenotypic substitution of Gaudryceras (a Cretaceous ammonite). Trans Proc Palaeontol Soc Jpn New Ser 109:235–258

    Google Scholar 

  • Hirano H (1979) Importance of transient polymorphism in systematics of Ammonoidea. Gakujutsu Kenkyu Sch Educ Waseda Univ Ser Biol Geol 28:35–43

    Google Scholar 

  • Hirano H (1981) Growth rates in Nautilus macromphalus and ammonoids: its implications. In: Martinell J (ed) International symposium on conceptions and methods in paleontology. University of Barcelona, Barcelona

    Google Scholar 

  • Hoffmann R, Keupp H, Wiese F (2009) The systematic position of the Lower Cretaceous heteromorphic ammonite Pictetia Uhlig, 1883. Paläontol Z 83:521–531

    Google Scholar 

  • Hohenegger J, Tatzreiter F (1992) Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Triassic). J Paleontology 66:801–816

    Google Scholar 

  • Hölder H (1956) Über Anomalien an jurassischen Ammoniten. Paläontol Z 30:95–107

    Google Scholar 

  • Hoving H-JT, Gilly WF, Markaida U, Benoit-Bird KJ, Brown ZW, Daniel P, Field JC, Parassenti L, Liu B, Campos B (2013) Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob Change Biol 19:2089–2103

    Google Scholar 

  • Howarth MK (1973) The stratigraphy and ammonite fauna of the Upper Liassic grey shales of the Yorkshire coast. Bull Br Mus (Nat Hist) Geol 24:235–277

    Google Scholar 

  • Howarth MK (1978) The stratigraphy and ammonite fauna of the Upper Lias of Northamptonshire. Bull Br Mus (Nat Hist) Geol 29:235–288

    Google Scholar 

  • Hughes NC, Labandeira CC (1995) The stability of species in taxonomy. Paleobiology 21:401–403

    Google Scholar 

  • Hunt G (2004a) Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426–443

    Google Scholar 

  • Hunt G (2004b) Phenotypic variance inflation in fossil samples: an empirical assessment. Paleobiology 30:487–506

    Google Scholar 

  • Hunt G (2006) Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578–601

    Google Scholar 

  • Hunt G (2007) Variation and early evolution. Science 317:459–460

    Google Scholar 

  • Ikeda Y, Wani R (2012) Different modes of migration among late cretaceous ammonoids in northwestern Hokkaido, Japan: evidence from the analyses of shell whorls. J Paleontol 86:605–615

    Google Scholar 

  • Ivanov AN (1971a) Problems of the periodization of ontogeny in ammonites. Yarosl Ped Inst Uch Zap geol i paleont 87:76–119

    Google Scholar 

  • Ivanov AN (1971b) On the problem of periodicity of the formation of septa in ammonoid shells and in that of other cephalopods. Yarosl Ped Inst Uch Zap geol i paleont 87:127–130

    Google Scholar 

  • Ivanov AN (1975) Late ontogeny in ammonites and its characteristics in micro-, macro- and megaconchs. Yarosl Ped Inst Sb Nauchn Trudy 142:5–57

    Google Scholar 

  • Jackson GD (1994) Application and future potential of statolith increment analysis in squids and sepioids. Can J Fish Aquat Sci 51:2612–2625

    Google Scholar 

  • Jackson G, Moltschaniwskyj N (2002) Spatial and temporal variation in growth rates and maturity in the Indo-Pacific squid Sepioteuthis lessoniana (Cephalopoda: Loliginidae). Mar Biol 140:747–754

    Google Scholar 

  • Jacobs DK (1990) Sutural pattern and shell stress in Baculites with implications for other cephalopod shell morphologies. Paleobiology 16:336–348

    Google Scholar 

  • Jacobs DK, Landman NH, Chamberlain JA (1994) Ammonite shell shape co-varies with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905–908

    Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer, Netherlands

    Google Scholar 

  • Joly B (2003) L’évolution chez les Phyllocerataceae, la variabilité des paramètres dimensionnels et relatifs. Variabilité de la complexité de la ligne cloisonnaire: Variabilité et paedomorphose. C R Pale 2:231–240

    Google Scholar 

  • Joly B, Fonters B (2007) Morphotypes, polymorphism and peristome in the species of the genus Holcophylloceras Spath, 1927. Hypothesis of the dimorphism in the species Holcophylloceras zignodianum (d’Orbigny, 1848). Bull Soc Geol Fr 178:217–229

    Google Scholar 

  • Jordan R, Stahl W (1971) Isotopische Paläotemperatur-Bestimmungen an Jurassischen Ammoniten und grundsätzliche Voraussetzungen für diese Methode. Geol Jahrb 89:33–62

    Google Scholar 

  • Kakabadze MV (2004) Intraspecific and intrageneric variabilities and their implication for the systematics of Cretaceous heteromorph ammonites; a review. Scr Geol 128:17–37

    Google Scholar 

  • Kampstra P (2008) Beanplot: a boxplot alternative for visual comparison of distributions. J Stat Softw 28, Code Snippet 1.

    Google Scholar 

  • Kant R (1973a) Allometrisches Wachstum paläozoischer Ammonoideen: Variabilität und Korrelation einiger Merkmale. Neues Jahrb Geol Paläontol Abh 143:153–192

    Google Scholar 

  • Kant R (1973b) Untersuchungen des allometrischen Gehäusewachstums paläozoischer Ammonoideen unter besonderer Berücksichtigung einzelner “Populationen.”. N Jahrb Geol Paläont Abh 144:206–251

    Google Scholar 

  • Kant R (1975) Biometrische Untersuchungen an Ammonoideen-Gehäusen. Paläontol Z 49:203–220

    Google Scholar 

  • Kaplan P (1999) Buckman’s rule of covariation and other trends in Paleozoic Ammonoidea: morphological integration as key innovation. GSA 31:172

    Google Scholar 

  • Kassab AS, Hamama HH (1991) Polymorphism in the upper Cretaceous ammonite Libycoceras ismaeli (Zittel). J Afr Earth Sci (Middle East) 12:437–448

    Google Scholar 

  • Kawabe F (2003) Relationship between Mid-Cretaceous (upper Albian-Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cretac Res 24:751–763

    Google Scholar 

  • Kenkel NC (2006) On selecting an appropriate multivariate analysis. Can J Plant Sci 86:663–676

    Google Scholar 

  • Kennedy WJ (1972) The affinities of Idiohamites ellipticoides Spath (Cretaceous Ammonoidea). Palaeontology 15:400–404

    Google Scholar 

  • Kennedy WJ (2013) On variation in Schloenbachia varians (J. Sowerby, 1817) from the lower Cenomanian of western Kazakhstan. Acta Geol Pol 63:443–446

    Google Scholar 

  • Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeontol 17:1–94

    Google Scholar 

  • Kennedy WJ, Hancock JM (1970) Ammonites of the genus Acanthoceras from the Cenomanian of Rouen, France. Palaeontology 13:462–490

    Google Scholar 

  • Kennedy WJ, Wright CW (1985) Evolutionary patterns in Late Cretaceous ammonites. Spec Pap Palaeont 33:131–143

    Google Scholar 

  • Kennedy WJ, Reyment RA, MacLeod N, Krieger J (2009) Species discrimination in the Lower Cretaceous (Albian) ammonite genus Knemiceras Von Buch 1848. Palaeontogr A 290:1–63

    Google Scholar 

  • Keupp H (2000). Ammoniten: paläobiologische Erfolgsspiralen. Thorbecke, Stuttgart

    Google Scholar 

  • Keupp H (2012) Atlas zur Paläopathologie der Cephalopoden. Berl Palaeobiol Abh 12:1–392

    Google Scholar 

  • Keupp H, Hoffmann R (2015) Ammonoid paleopathology. This volume

    Google Scholar 

  • Keupp H, Mitta V (2013) Cephalopod jaws from the Middle Jurassic of Central Russia. Neues Jahrb Geol Paläontol Abh 270:23–54

    Google Scholar 

  • Keyl F, Argüelles J, Tafur R (2011) Interannual variability in size structure, age, and growth of jumbo squid (Dosidicus gigas) assessed by modal progression analysis. ICES J Mar Sci J Cons 68:507–518

    Google Scholar 

  • Kidwell SM (1998) Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30:977–995

    Google Scholar 

  • Kidwell SM (2002) Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803–806

    Google Scholar 

  • Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Plenum, New York

    Google Scholar 

  • Kin A (2010) Early Maastrichtian ammonites and nautiloids from Hrebenne, southeast Poland, and phenotypic plasticity of Acanthoscaphites tridens (Kner, 1848). Cretaceous Res 31:27–60

    Google Scholar 

  • Kin A (2011) Phenotypic plasticity of Acanthoscaphites tridens (Late Cretaceous ammonites): additional data. Cretaceous Res 32:131–134

    Google Scholar 

  • Klingenberg CP (1996) Multivariate allometry. In: Marcus LF et al (eds) Advances in morphometrics. Plenum, New York

    Google Scholar 

  • Klinger HC, Kennedy WJ (1989) Cretaceous faunas from Zululand and Natal, South Africa. The ammonite family Placenticeratidae hyatt, 1900; with comments on the systematic position of the genus Hypengonoceras Spath, 1924. Ann S Afr Mus 98:241–408

    Google Scholar 

  • Klug C, Riegraf W, Lehmann J (2012) Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian boundary event (OAE 2) in north-west Germany. Palaeontology 55:1307–1331

    Google Scholar 

  • Klug C, Zatoń M, Parent H, Hostettler B, Tajika A (2015) Mature modifications and sexual dimorphism. This volume

    Google Scholar 

  • Knauss MJ, Yacobucci MM (2014) Geographic information systems technology as a morphometric tool for quantifying morphological variation in an ammonoid clade. Palaeontol Electron 17:19A

    Google Scholar 

  • Korn D (1995) Impact of environmental perturbations on heterochronic development in Palaeozoic ammonoids. In: McNamara KJ (ed) Evolutionary change and heterochrony. Wiley, Chichester

    Google Scholar 

  • Korn D, Klug C (2007) Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods-present and past: new insights and fresh perspectives. Springer, Dordrecht

    Google Scholar 

  • Korn D, Vöhringer E (2004) Allometric growth and intraspecific variability in the Basal Carboniferous ammonoid Gattendorfia crassa Schmidt, 1924. Paläontol Z 78:425–432

    Google Scholar 

  • Kowalewski M (2009) The youngest fossil record and conservation biology: holocene shells as eco-environmental recorders. In: Dietl GP, Flessa KW (eds) Conservation paleobiology: using the past to manage for the future. Paleontological Society, New Haven

    Google Scholar 

  • Kraft S, Korn D, Klug C (2008) Patterns of ontogenetic septal spacing in Carboniferous ammonoids. Neues Jahrb Geol Paläontol Abh 250:31–44

    Google Scholar 

  • Kruta I, Landman NH, Tanabe K (2015) Ammonoid radulae. This volume

    Google Scholar 

  • Krystyn L, Schäffer G, Schlager W (1971) Über die Fossil-Lagerstätten in den triadischen Hallstätter Kalken der Ostalpen. Neues Jahrb Geol Paläontol Abh 137:284–304

    Google Scholar 

  • Kulicki C (1974) Remarks on the embryogeny and postembryonal development of ammonites. Acta Palaeontol Pol 19:201–224

    Google Scholar 

  • Kummel B (1948) Environmental significance of dwarfed cephalopods. J Sediment Res 18:61–64

    Google Scholar 

  • Landman NH (1987) Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the western interior of North America: systematics, developmental patterns, and life history. Bull Am Mus Nat Hist 185:117–241

    Google Scholar 

  • Landman NH, Geyssant JR (1993) Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios 26(Suppl 1):247–255

    Google Scholar 

  • Landman NH, Waage KM (1986) Shell abnormalities in scaphitid ammonites. Lethaia 19:211–224

    Google Scholar 

  • Landman NH, Waage KM (1993) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills formation in South Dakota and Wyoming. Bull Am Mus Nat Hist 215:1–257

    Google Scholar 

  • Landman N, Klofak SM, Sarg KB (2008) Variation in adult size of scaphitid ammonites from the Upper Cretaceous Pierre Shale and Fox Hills formation. In: Harries PJ (ed) High-resolution approaches in stratigraphic paleontology. Springer, Netherlands

    Google Scholar 

  • Landman NH, Kennedy WJ, Cobban WA, Larson NL (2010) Scaphites of the “Nodosus Group” from the Upper Cretaceous (Campanian) of the Western Interior of North America. Bull Am Mus Nat Hist 342:1–242

    Google Scholar 

  • Landman NH, Cobban WA, Larson NL (2012) Mode of life and habitat of scaphitid ammonites. Geobios 45:87–98

    Google Scholar 

  • Lange W (1929) Zur Kenntnis des Oberdevons am Enkeberg und bei Balve (Sauerland). Abh Preuss Geol Landesanst NF 119:1–132

    Google Scholar 

  • Lange W (1941) Die Ammonitenfauna der Psiloceras-Stufe Norddeutschlands. Palaeontogr A 93:1–186

    Google Scholar 

  • Laptikhovsky V (2006) Latitudinal and bathymetric trends in egg size variation: a new look at Thorson’s and Rass’s rules. Mar Ecol 27:7–14

    Google Scholar 

  • Laptikhovsky VL, Rogov MA, Nikolaeva SE, Arkhipkin AI (2013) Environmental impact on ectocochleate cephalopod reproductive strategies and the evolutionary significance of cephalopod egg size. Bull Geosci 88:83–94

    Google Scholar 

  • Lawrence E (2000) Henderson’s dictionary of biological terms. Pearson, Essex

    Google Scholar 

  • Lécuyer C, Bucher H (2006) Stable isotope compositions of a late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth 1:1–7

    Google Scholar 

  • Lehmann U (1981) The ammonites: their life and their world. Cambridge University, New York

    Google Scholar 

  • Lehmann U (1990) Ammonoideen. Enke, Stuttgart

    Google Scholar 

  • Leporati S, Pecl G, Semmens J (2007) Cephalopod hatchling growth: the effects of initial size and seasonal temperatures. Mar Biol 151:1375–1383

    Google Scholar 

  • Levene H (1960) Robust test for the equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB (eds) Contributions to probability and statistics: essays in honor of harold hotelling. Stanford University, Stanford

    Google Scholar 

  • Levins R (1968) Evolution in changing environments. Princeton University, Princeton, p 120

    Google Scholar 

  • Machalski M (2010) Early Maastrichtian ammonites and nautiloids from Hrebenne, southeast Poland, and phenotypic plasticity of Acanthoscaphites tridens (Kner, 1848): a commentary. Cretaceous Res 31:593–595

    Google Scholar 

  • Makowski H (1962) Problem of sexual dimorphism in ammonites. Palaeontol Pol 12:1–92

    Google Scholar 

  • Makowski H (1991) Dimorphism and evolution of the goniatite Tornoceras in the Famennian of the holy cross mountains. Acta Palaeontol Pol 36:241–254

    Google Scholar 

  • Mancini EA (1978) Origin of micromorph faunas in the geologic record. J Paleontol 52:311–322

    Google Scholar 

  • Manger WL, Meeks LK, Stephen DA (1999) Pathologic gigantism in middle Carboniferous cephalopods, southern midcontinent, United States. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Mangold K (1983) Food, feeding and growth in cephalopods. Mem Natl Mus Vic 44:81–93

    Google Scholar 

  • Manship LL (2004) Pattern matching: classification of ammonitic sutures using GIS. Palaeontol Electron 7(6A):1–15

    Google Scholar 

  • Manship LL (2008) Variation analysis of ammonites and conodonts (implementing Geographic Information Systems): a qualitative and quantitative method. Texas Tech University, Lubbock

    Google Scholar 

  • Mapes RH, Larson NL (2015) Colour patterns. This volume

    Google Scholar 

  • Mapes RH, Sneck DA (1987) The oldest ‘colour’ patterns: description, comparison with Nautilus, and implications. Palaeontology 30:299–309

    Google Scholar 

  • Marchand D (1976) Quelques précisions sur le polymorphisme dans la famille des Cardioceratidae Douville (Ammonoidea). Haliotis 6:119–140

    Google Scholar 

  • Matsunaga T, Maeda H, Shigeta Y, Hasegawa K, Nomura S-I, Nishimura T, Misaki A, Tanaka G (2008) First discovery of Pravitoceras sigmoidale Yabe from the Yezo supergroup in Hokkaido, Japan. Paleontol Res 12:309–319

    Google Scholar 

  • Matyja BA (1986) Developmental polymorphism in Oxfordian ammonites. Acta Geol Pol 36:37–67

    Google Scholar 

  • Matyja BA (1994) Developmental polymorphism in the Oxfordian ammonite subfamily Peltoceratinae. Palaeopelagos Spec Publ 1:277–286

    Google Scholar 

  • Matyja BA, Wierzbowski A (2000) Biological response of ammonites to changing environmental conditions: an example of Boreal Amoeboceras invasions into Submediterranean province during Late Oxfordian. Acta Geol Pol 50:45–54

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap of Harvard University , Cambridge

    Google Scholar 

  • McCaleb JA (1968) Lower Pennsylvanian ammonoids from the Bloyd formation of Arkansas and Oklahoma. GSA Special Papers 96:1–118

    Google Scholar 

  • McCaleb JA, Furnish WM (1964) The Lower Pennsylvanian ammonoid genus Axinolobus in the southern Midcontinent. J Paleontol 38:249–255

    Google Scholar 

  • McCaleb JA, Quinn JH, Furnish WM (1964) Girtyoceratidae in the southern Midcontinent. Okla Geol Surv Circ 67:1–41

    Google Scholar 

  • Meischner D (1968) Perniciöse Epökie von Placunopsis auf Ceratites. Lethaia 1:156–174

    Google Scholar 

  • Meister C (1989) Les ammonites du Crétacé supérieur d’Ashaka (Nigéria). Bull Centres Rech Explor-Prod Elf-Aquitaine 13(Suppl):1–84

    Google Scholar 

  • Meléndez G, Fontana B (1993) Intraspecific variability, sexual dimorphism, and non-sexual polymorphism in the ammonite genus Larcheria Tintant (Perisphinctidae) from the middle Oxfordian of western Europe. In: House MR (ed) The Ammonoidea: environment, ecology, and evolutionary change. Clarendon, Oxford

    Google Scholar 

  • Merkt J (1966) Über Austern und Serpeln als Epöken auf Ammonitengehäusen. Neues Jahrb Geol Paläontol Abh 125:467–479

    Google Scholar 

  • Michalsky AO (1890) Ammonites of the Lower Volgian stage. Tr Geol kom-ta St. Petersburg 8:361–369 [in Russian]

    Google Scholar 

  • Mignot Y (1993) Un problème de paléobiologie chez les ammonoides (Cephalopoda): croissance et miniaturisation en liaison avec les environnements. Doc Lab Geol Lyon 124:1–113

    Google Scholar 

  • Mignot Y, Elmi S, Dommergues J-L (1993) Croissance et miniaturisation de quelques Hildoceras (Cephalopoda) en liaison avec des environnements contraignants de la Téthys Toarcienne. Geobios 26(Suppl 1):305–312

    Google Scholar 

  • Miller RG (1974) The jackknife-a review. Biometrika 61:1–15

    Google Scholar 

  • Mitta VV (1990) Intraspecific variability in the Volgian ammonites. Paleontol J 1990:10–15

    Google Scholar 

  • Monnet C, Bucher H (2005) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Fossils Strata 52:1–121

    Google Scholar 

  • Monnet C, Brack P, Bucher H, Rieber H (2008) Ammonoids of the middle/late Anisian boundary (Middle Triassic) and the transgression of the prezzo limestone in eastern Lombardy-Giudicarie (Italy). Swiss J Geosci 101:61–84

    Google Scholar 

  • Monnet C, Bucher H, Wasmer M, Guex J (2010) Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intraspecific variability. Palaeontology 53:961–996

    Google Scholar 

  • Monnet C, De Baets K, Klug C (2011a) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11:115

    Google Scholar 

  • Monnet C, Klug C, Goudemand N, De Baets K, Bucher H (2011b) Quantitative biochronology of Devonian ammonoids from Morocco and proposals for a refined unitary association method. Lethaia 44:469–489

    Google Scholar 

  • Monnet C, Bucher H, Guex J, Wasmer M (2012) Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule. Palaeontology 55:87–107

    Google Scholar 

  • Monnet C, De Baets K, Yacobucci MM (2015a) Buckman’s rules of covariation. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid paleobiology: from macroevolution to paleogeography. Springer, Dordrecht

    Google Scholar 

  • Monnet C, Klug C, De Baets K (2015b) Evolutionary patterns of ammonoids: phenotypic trends, convergence, and parallel evolution. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid paleobiology: from macroevolution to paleogeography. Springer, Dordrecht

    Google Scholar 

  • Morard A (2004) Les événements du passage Domérien-Toarcien entre Thétys occidentale et Europe du Nord-Ouest. 1–338. Thèse de Doctorat, Université de Lausanne, Lausanne

    Google Scholar 

  • Morard A (2006) Covariation patterns in ammonoids: observations, models, and open questions. Proceedings of the 4th Swiss Geoscience Meeting, Bern

    Google Scholar 

  • Morard A, Guex J (2003) Ontogeny and covariation in the Toarcian genus Osperleioceras (Ammonoidea). Bull Soc Geol Fr 174:607–615

    Google Scholar 

  • Naglik C, Tajika A, Chamberlain JA, Klug C (2015) Ammonoid locomotion. This volume

    Google Scholar 

  • Nardin E, Rouget I, Neige P (2005) Tendencies in paleontological practice when defining species, and consequences on biodiversity studies. Geology 33:969–972. doi:10.1130/g21838.1

    Google Scholar 

  • Neige P (1997) Ontogeny of the Oxfordian ammonite Creniceras renggeri from the Jura of France. Eclogae Geol Helv 90:605–616

    Google Scholar 

  • Neige P, Dommergues J-L (1995) Morphometric and phenetics versus cladistic analysis of the early Harpoceratinae (Pliensbachian ammonites). Neues Jahrb Geol Paläontol Abh 196:411–438

    Google Scholar 

  • Neige P, Marchand D, Laurin B (1997a) Heterochronic differentiation of sexual dimorphs among Jurassic ammonite species. Lethaia 30:145–155

    Google Scholar 

  • Neige P, Chaline J, Chone T, Courant F, David B, Dommergues J-L, Laurin B, Madon C, Magniez-Jannin F, Marchand D, Thierry J (1997b) La notion d’espace morphologique, outil d’analyse de la morphodiversité des organismes. Geobios 30(Suppl 1):415–422

    Google Scholar 

  • Nigmatullin CM, Nesis KN, Arkhipkin AI (2001) A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish Res 54:9–19

    Google Scholar 

  • Oechsle E (1958) Stratigraphie und Ammonitenfauna der Sonninien-Schichten des Filsgebiets unter besonderer Berucksichtgung der Sowerbyi Zone (Mittlerer Doggers, Wuttemberg). Palaeontogr A 111:47–129

    Google Scholar 

  • Olóriz F (2000) Time-averaging and long-term palaeoecology in macroinvertebrate fossil assemblages with ammonites (Upper Jurassic). Rev Paleobiol 19:123–140

    Google Scholar 

  • Olóriz F, Palmqvist P, Pérez-Claros JA (1997) Shell features, main colonized environments, and fractal analysis of sutures in Late Jurassic ammonites. Lethaia 30:191–204

    Google Scholar 

  • Oloriz F, Palmqvist P, Perez-Claros JA (1999) Recent advances in morphometric approaches to covariation of shell features and the complexity of suture lines in Late Jurassic ammonites, with reference to the major environments colonized. In: Oloriz F, Rodriguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Olóriz F, Villaseñor AB, González-Arreola C (2000) Geographic control on phenotype expression. The case of Hybonoticeras mundulum (Oppel) from the Mexican Altiplano. Lethaia 33:157–174

    Google Scholar 

  • Palframan DFB (1966) Variation and ontogeny of some Oxfordian ammonites: Taramelliceras richei (de Loriol) and Creniceras renggeri (Oppel), from Woodham, Buckinghamshire. Palaeontology 9:290–311

    Google Scholar 

  • Palframan DFB (1967) Variation and ontogeny of some oxford clay ammonites: Distichoceras bicostatum (Stahl) and Horioceras baugieri (D’Orbigny), from England. Palaeontology 10:60–94

    Google Scholar 

  • Parent H (1998) Upper Bathonian and lower Callovian ammonites from Chacay Melehué (Argentina). Acta Palaeontol Pol 43:69–130

    Google Scholar 

  • Parent H, Scherzinger A, Schweigert G (2008) Sexual phenomena in late Jurassic Aspidoceratidae (Ammonoidea). Dimorphic correspondence between Physodoceras hermanni (Berckhemer) and Sutneria subeumela Schneid, and first record of possible hermaphroditism. Palaeodiversity 1:181–187

    Google Scholar 

  • Parent H, Greco AF, Bejas M (2009) Size-shape relationships in the Mesozoic planispiral ammonites. Acta Palaeontol Pol 55:85–98

    Google Scholar 

  • Parent H, Bejas M, Greco A, Hammer O (2011) Relationships between dimensionless models of ammonoid shell morphology. Acta Palaeontol Pol 57:445–447

    Google Scholar 

  • Paul CRC (2011) Sutural variation in the ammonites Oxynoticeras and Cheltonia from the Lower Jurassic of Bishop’s Cleeve, Gloucestershire, England and its significance for ammonite growth. Palaeogeogr. Palaeoclimatol Palaeoecol 309:201–214

    Google Scholar 

  • Pavia G (2006) Nomenclatural suitability in ammonoid classification: generic versus subgeneric status of dimorphic pairs. Volumina Jurassica 7:254

    Google Scholar 

  • Pearson K (1895) Contributions to the mathematical theory of evolution II. Skew variation in homogeneous material. Philos Trans Roy Soc Lond A 186:343–414

    Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Phenomenol 2:559–572

    Google Scholar 

  • Pecl G, Jackson G (2008) The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev Fish Biol Fish 18:373–385

    Google Scholar 

  • Pecl GT, Steer MA, Hodgson KE (2004) The role of hatchling size in generating the intrinsic size-at-age variability of cephalopods: extending the Forsythe hypothesis. Mar Freshw Res 55:387–394

    Google Scholar 

  • Pfaff E (1911) Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie. Jb Niedersächs Geol 4:208–223

    Google Scholar 

  • Pictet FJ (1854) Traité de paléontologie, Céphalopodes, 2. B. Baillière, Paris

    Google Scholar 

  • Ploch I (2003) Taxonomic interpretation and sexual dimorphism in the Early Cretaceous (Valanginian) ammonite Valanginites nucleus (ROEMER, 1841). Acta Geol Pol 53:201–208

    Google Scholar 

  • Ploch I (2007) Intraspecific variability and problematic dimorphism in the Early Cretaceous (Valanginian) ammonite Saynoceras verrucosum (d’Orbigny, 1841). Acta Geol Sin 81:877–882

    Google Scholar 

  • Powell EN, Davies DJ (1990) When Is an “Old” shell really old? J Geol 98:823–844

    Google Scholar 

  • Rawson PF (1975a) The interpretation of the Lower Cretaceous heteromorph ammonite genera Paracrioceras and Hoplocrioceras Spath, 1924. Palaeontology 18:275–283

    Google Scholar 

  • Rawson PF (1975b) Lower Cretcaeous ammonites from north-east England: the Hauterivian heteromorph Aegocrioceras. Bull Br Mus (Nat Hist) Geol 26:139–159

    Google Scholar 

  • Reboulet S (2001) Limiting factors on shell growth, mode of life and segregation of Valanginian ammonoid populations: evidence from adult-size variations. Geobios 34:423–435

    Google Scholar 

  • Reeside JB, Cobban WA (1960) Studies of the Mowry shale (Cretaceous) and contemporary formations in the United States and Canada. US Geol Surv Prof Pap 355:1–126

    Google Scholar 

  • Reyment RA (1988) Does sexual dimorphism occur in cretaceous ammonoids? Senckenb Lethaea 69:109–119

    Google Scholar 

  • Reyment RA (2003) Morphometric analysis of variability in the shell of some Nigerian Turonian (Cretaceous) ammonites. Cretaceous Res 24:789–803

    Google Scholar 

  • Reyment R (2004) Instability in principal component analysis and the quantification of polyphenism in palaeontological data. Math Geol 36:629–638

    Google Scholar 

  • Reyment RA (2011) Morphometric analysis of polyphenism in Lower Cretaceous ammonite genus Knemiceras. In: Elewa AMT (ed) Computational paleontology. Springer, Berlin

    Google Scholar 

  • Reyment RA, Kennedy WJ (1991) Phenotypic plasticity in a cretaceous ammonite analyzed by multivariate statistical methods. Methodol Study Evol Biol 25:411–426

    Google Scholar 

  • Reyment RA, Kennedy WJ (1998) Taxonomic recognition of species of Neogastroplites (Ammonoidea, Cenomanian) by geometric morphometric methods. Cretaceous Res 19:25–42

    Google Scholar 

  • Reyment RA, Kennedy WJ (2000) Morphological links in an evolutionary sequence of the cretaceous ammonite genus Metoicoceras Hyatt. Cretaceous Res 21:845–849

    Google Scholar 

  • Reyment RA, Minaka N (2000) A note on reiterated phenotypes in species of Neogastroplites (Ammonoidea, Cenomanian, Cretaceous). Cretaceous Res 21:173–175

    Google Scholar 

  • Rieber H (1973) Ergebnisse paläontologisch-stratigraphischer Untersuchungen in der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio (Kanton Tessin, Schweiz). Eclog Geol Helv 66:667–685

    Google Scholar 

  • Ritterbush KA, Hoffmann R, Lukeneder A, De Baets K (2014) Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. J Zool 292:229–241

    Google Scholar 

  • Rocha R, Dias R (2005) Finite strain analysis using ammonoids: an interactive approach. J Struct Geol 27:475–479

    Google Scholar 

  • Ropolo P (1995) Implications of variation in coiling in some Hauterivian (Lower Cretaceous) heteromorph ammonites from the Vocontian basin, France. Mem Descr Cart Geol Ital 51:137–165

    Google Scholar 

  • Rouget I, Neige P (2001) Embryonic ammonoid shell features: intraspecific variation revisited. Palaeontology 44:53–64

    Google Scholar 

  • Salgado-Ugarte IH, Shimizu M, Taniuchi T, Matsushita K (2000) Size frequency analysis by averaged shifted histograms and kernel density estimators. Asian Fish Sci 13:1–12

    Google Scholar 

  • Sandoval J, Chandler RB (2000) The sonniniid ammonite Euhoploceras from the Middle Jurassic of south-west England and southern Spain. Palaeontology 43:495–532

    Google Scholar 

  • Sanvicente-Añorve L, Salgado-Ugarte I, Castillo-Rivera M (2003) The use of kernel density estimators to analyse length-frequency distributions of fish larvae. In: Browman HI, Skiftesvik AB (eds) The big fish bang. Proceedings of the 26th annual larval fish conference. Institute of Marine Research, Bergen

    Google Scholar 

  • Sarti C (1999) Whorl width in the body chamber of the ammonites as a sign of dimorphism. In: Olóriz F, Rodríguez-Tovar F(eds) Advancing research on living and fossil cephalopods. Kluwer Academic, Plenum, New York

    Google Scholar 

  • Saunders WB, Swan ARH (1984) Morphology and morphologic diversity of Mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195–228

    Google Scholar 

  • Schindewolf OH (1934) Über Epöken auf Cephalopoden-Gehäusen. Paläontol Z 16:15–31

    Google Scholar 

  • Schindewolf OH (1961) Die Ammoniten-Gattung Cymbites im deutschen Lias. alaeontogr Abt A Palaeozool-Stratigr 117:193–232

    Google Scholar 

  • Schmidt H (1926) Neotenie und beschleunigte Entwicklung bei Ammoneen. Paläontol Z 7:197–205

    Google Scholar 

  • Schweigert G, Dietze V, Chandler RB, Mitta VV (2007) Revision of the Middle Jurassic dimorphic ammonite genera Strigoceras/Cadomoceras (Strigoceratidae) and related forms. Stuttg Beitr Nat Ser B (Geol Paläont) 373:1–74

    Google Scholar 

  • Seilacher A (1973) Fabricational noise in adaptive morphology. Syst Zool 22:451–465

    Google Scholar 

  • Seilacher A (1988) Why are nautiloid and ammonite sutures so different? Neues Jahrb Geol Paläontol Abh 177:41–69

    Google Scholar 

  • Silberling NJ (1956) “Trachyceras Zone” in the Upper Triassic of the western United States. J Paleontol 30:1147–1153

    Google Scholar 

  • Silberling NJ, Nichols KM (1982) Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada. U.S. Geological Survey Professional Paper 1207:1–77

    Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York, p. 237

    Google Scholar 

  • Simpson Stephen J, Sword Gregory A, Lo N (2011) Polyphenism in insects. Curr Biol 21:R738–R749

    Google Scholar 

  • Spath LF (1919) V.-Notes on Ammonites: I. Geol Mag 6:27–35

    Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–10

    Google Scholar 

  • Sprent P (1989) Applied nonparametric statistical methods. Chapman & Hall, London

    Google Scholar 

  • Stephen DA, Stanton RJ (2002) Impact of reproductive strategy on cephalopod evolution. Abh Geol Bundesanst 57:151–155

    Google Scholar 

  • Stephen DA, Manger WL, Baker C (2002) Ontogeny and heterochrony in the middle Carboniferous ammonoid Arkanites relictus (Quinn, McCaleb, and Webb) from northern Arkansas. J Paleontol 76:810–821

    Google Scholar 

  • Stevens GR (1988) Giant ammonites: a review. In: Wiedmann J, Kullmann J (eds) Cephalopodspresent and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Sturani C (1971) Ammonites and stratigraphy of the “Posidonia Alpina” beds of the Venetian Alps (Middle Jurassic, Mainly Bajocian). Mem Ist Geol Mineral Univ Padova 28:1–190

    Google Scholar 

  • Swan ARH, Saunders WB (1987) Function and shape in late Paleozoic (Mid-Carboniferous) ammonoids. Paleobiology 13:297–311

    Google Scholar 

  • Tajika A, Wani R (2011) Intraspecific variation of hatchling size in late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44:287–298

    Google Scholar 

  • Tan BK (1973) Determination of strain ellipses from deformed ammonoids. Tectonophys 16:89–101

    Google Scholar 

  • Tanabe K (1977a) Mid-Cretaceous scaphitid ammonites from Hokkaido. Palaeontological Society of Japan. Special Papers 21:11–22

    Google Scholar 

  • Tanabe K (1977b) Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Series D (Geology) 23. Memoirs of the Faculty of Science, Kyushu University, pp 367–407

    Google Scholar 

  • Tanabe K (1993) Variability and mode of evolution of the Middle Cretaceous ammonite Subprionocyclus (Ammonitina: Collignoniceratidae) from Japan. Geobios 26(Suppl 1):347–357

    Google Scholar 

  • Tanabe K, Shigeta Y (1987) Ontogenetic shell variation and streamlining of some Cretaceous ammonites. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 147:165–179

    Google Scholar 

  • Tanabe K, Shigeta Y, Mapes RH (1995) Early life history of Carboniferous ammonoids inferred from analysis of shell hydrostatics and fossil assemblages. Palaios 10:80–86

    Google Scholar 

  • Tanabe K, Landman NH, Yoshioka Y (2003) Intra- and interspecific variation in the early internal shell features of some Cretaceous ammonoids. J Paleontol 77:876–887

    Google Scholar 

  • Thierry J (1978) Le genre Macrocephalites au Callovien Inférieur (Ammonites, Jurassique Moyen). Mémoires Géologiques de l’Université de Dijon 4:1-490Tintant H (1963) Les kosmocératidés du Callovien inférieur et moyen d’Europe occidentale: essai de paléontologie quantitative. 29. Presses universitaires de France. Publications de l’Université de Dijon 29:1–491

    Google Scholar 

  • Tintant H (1963) Les kosmocératidés du Callovien inférieur et moyen d’Europe occidentale: essai de paléontologie quantitative, vol 29. Publications de l’Universite de Dijon, Paris, pp. 1–491

    Google Scholar 

  • Tintant H (1976) Le polymorphisme intraspécifique en paléontologie. Haliotis 6:49–69

    Google Scholar 

  • Tintant H (1980) Problématique de l’espèce en Paléozoologie. Mem Soc Zool Fr 40:321–372

    Google Scholar 

  • Tozer ET (1971) Triassic time and ammonoids: problems and proposals. Canad J Earth Sci 8:989–1031

    Google Scholar 

  • Trueman AE (1940) The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Q J Geol Soc 96:339–383

    Google Scholar 

  • Tsujino Y, Naruse H, Maeda H (2003) Estimation of allometric shell growth by fragmentary specimens of Baculites tanakae Matsumoto and Obata (a Late Cretaceous heteromorph ammonoid). Paleontol Res 7:245–255

    Google Scholar 

  • Ubukata T, Tanabe K, Shigeta Y, Maeda H, Mapes RH (2008) Piggyback whorls: a new theoretical morphologic model reveals constructional linkages among morphological characters in ammonoids. Acta Palaeontol Pol 53:113–128

    Google Scholar 

  • Urdy S (2015) Theoretical modelling of the molluscan shell: what has been learned from the comparison among molluscan taxa? This volume

    Google Scholar 

  • Urdy S, Goudemand N, Bucher H, Chirat R (2010a) Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Zool B 314:280–302

    Google Scholar 

  • Urdy S, Goudemand N, Bucher H, Chirat R (2010b) Growth dependent phenotypic variation of molluscan shell shape: implications for allometric data interpretation. J Exp Zool B 314:303–326

    Google Scholar 

  • Urdy S, Wilson LAB, Haug JT, Sánchez-Villagra MR (2013) On the unique perspective of paleontology in the study of developmental evolution and biases. Biol Theory 8:1–19. doi:10.1007/s13752-013-0115-1

    Google Scholar 

  • Urlichs M (2004) Kümmerwuchs bei Lobites Mosjsisovics, 1902 (Ammonoidea) aus dem Unter-Karnium der Dolomiten (Ober-Trias, Italien) mit Revision der unterkarnischen Arten. Stuttg Beitr Nat Ser B (Geol Palaont) 344:1–37

    Google Scholar 

  • Urlichs M (2012) Stunting in some invertebrates from the Cassian formation (Late Triassic, Carnian) of the Dolomites (Italy). Neues Jahrb Geol Paläontol Abh 265:1–25

    Google Scholar 

  • Van Valen L (1978) The statistics of variation. Evolut Theory 4:33–43

    Google Scholar 

  • Van Valen L (2005) The statistics of variation. In: Hallgrímsson B, Hall BK (eds) Variation: a central concept in biology. Academic, Burlington

    Google Scholar 

  • Vermeulen J (2002) Étude stratigraphique et paléontologique de la famille des Pulchelliidae (Ammonoidea, Ammonitina, Endemocerataceae). Geol Alp Hors Ser 42:331–333

    Google Scholar 

  • Vogel K-P (1959) Zwergwuchs bei Polyptychiten (Ammonoidea). Geol Jahrb 76:469–540

    Google Scholar 

  • Waggoner KJ (2006) Sutural form and shell morphology of Placenticeras and systematic descriptions of late cretaceous ammonites from the big bend region, Texas. 1-398. Texas Tech University, Lubbock

    Google Scholar 

  • Wagner FH (2000) Intraspecific variation. McGraw-Hill Yearbook of Science and Technology

    Google Scholar 

  • Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution Int J org Evolution 50:967–976

    Google Scholar 

  • Wani R (2001) Reworked ammonoids and their taphonomic implications in the upper cretaceous of northwestern Hokkaido, Japan. Cretaceous Res 22:615–625

    Google Scholar 

  • Wani R, Gupta NS (2015) Ammonoid taphonomy. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid paleobiology: from macroevolution to paleogeography. Springer, Dordrecht

    Google Scholar 

  • Ward P (1980) Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology 6:32–43

    Google Scholar 

  • Ward PD (1987) The natural history of Nautilus. Allen & Unwin, Boston

    Google Scholar 

  • Ward PD, Westerman GEG (1985) Cephalopod paleoecology. In: Broadhead TW (ed) Mollusks, notes for a short cource. University of Tennessee, Knoxville

    Google Scholar 

  • Weitschat W (2008) Intraspecific variation of Svalbardiceras spitzbergensis (Frebold) from the early Triassic (Spathian) of Spitsbergen. Polar Res 27(3):292–297

    Google Scholar 

  • Weitschat W, Bandel K (1991) Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontol Z 65:269–303

    Google Scholar 

  • Wendt J (1971) Genese und Fauna submariner sedimentärer Spaltenfüllungen im mediterranen Jura. Palaeontogr A 136:121–192

    Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University, Oxford

    Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci USA 102:6543–6549

    Google Scholar 

  • Westermann G (1964) Sexual-Dimorphismus bei Ammonoideen und seine Bedeutung für die Taxonomie der Otoitidae (einschließlich Sphaeroceratinae; Ammonitina, M. Jura). Palaeontogr A:33–73

    Google Scholar 

  • Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). Neues Jahrb Geol Paläontol Abh 124:289–312

    Google Scholar 

  • Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci Contrib, Royal Ontario Museum 78:1–39

    Google Scholar 

  • Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Westermann GEG, Callomon J (1988) The Macrocephalitinae and associated Bathonian and early Callovian (Jurassic) ammonoids of the Sula Islands and New Guinea. Palaeontogr A 203:1–90

    Google Scholar 

  • Wiedmann J (1969) The heteromorphs and ammonoid extinction. Biol Rev 44:563–602

    Google Scholar 

  • Wiedmann J, Dieni I (1968) Die Kreide Sardiniens und ihre Cephalopoden. Palaeontogr Italica 64:1–171

    Google Scholar 

  • Wiese F, Schulze F (2005) The Upper Cenomanian (Cretaceous) ammonite Neolobites vibrayeanus (d’Orbigny, 1841) in the Middle East: taxonomic and palaeoecologic remarks. Cretaceous Res 26:930–946

    Google Scholar 

  • Willmore KE, Young NM, Richtsmeier JT (2007) Phenotypic variability: its components, measurement and underlying developmental processes. Revolut Biol 34(3–4):99–120

    Google Scholar 

  • Wilmsen M, Mosavinia A (2011) Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817) (Cretaceous Ammonoidea). Paläontol Z 85:169–184

    Google Scholar 

  • Yacobucci MM (2004a) Buckman’s paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 37:57–69

    Google Scholar 

  • Yacobucci MM (2004) Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-cretaceous mowry sea of North America. Cretaceous Res 25:927–944

    Google Scholar 

  • Yacobucci MM (2008) Controls on shell shape in acanthoceratid ammonites from the Cenomanian-Turonian Western Interior seaway. In: Harries PJ (ed) High-resolution approaches in stratigraphic paleontology. Springer, Netherlands

    Google Scholar 

  • Yacobucci MM, Manship LL (2011) Ammonoid septal formation and suture asymmetry explored with a geographic information systems approach. Palaeontol Electron 14:3A:17

    Google Scholar 

  • Yahada H, Wani R (2013) Limited migration of scaphitid ammonoids: evidence from the analyses of shell whorls. J Paleontol 87:406–412

    Google Scholar 

  • Yamaji A, Maeda H (2013) Determination of 2D strain from a fragmented single ammonoid. Isl Arc 22:126–132

    Google Scholar 

  • Zakharov YD (1977) Ontogeny of ceratites of the genus Pinacoceras and developmental features of the suborder Pinacoceratina. Paleontol J 4:445–445

    Google Scholar 

  • Zatoń M (2008) Taxonomy and palaeobiology of the Bathonian (Middle Jurassic) tulitid ammonite Morrisiceras. Geobios 41:699–717.

    Google Scholar 

  • Zittel KA von (1885) Handbuch der Paläontologie, Abt. 1, Bd. 2. R. Oldenbourg, München

    Google Scholar 

  • Zuev GV (1971) Cephalopods from the north-western part of the Indian Ocean. Naukova Dumka, Kiev in Russian

    Google Scholar 

  • Zuev GV (1976) Physiological variability of the females of the squid Symplectoteuthis pteropus (Steenstrup). Biol Sea 38:55–62 [in Russian]

    Google Scholar 

Download references

Acknowledgments

Some of the insights described in this chapter grew during the course of research projects 200021-113956⁄1, 200020-25029, and 200020-132870 funded by the Swiss National Science Foundation SNF. David Ware (Zürich) and Isabelle Rouget (Paris) helped with obtaining some of the literature. Markus Wilmsen (Senckenberg Natural History Collections, Dresden), Gene Hunt (Smithsonian Institution, Washington, USA) and Michał Zatoń (University of Silesia, Sosnowiec) kindly put figures at our disposal. Jerzy Dzik (Institute of Paleobiology, Polish Academy of Sciences, Warsaw), Helga Weitschat on behalf of Wolfgang Weitschat (Geological–Paleontological Institute and Museum, University of Hamburg, retired), Vasily Mitta (Paleontological Institute, Russian Academy of Sciences, Moscow), Lionel Cavin (Natural History Museum of Geneva) on behalf of the journal Revue de Paléobiologie, and Jim Kennedy (University of Oxford, retired) gave permission to use their figures. We thank the reviewers Michał Zatoń (University of Silesia, Sosnowiec) and Sonny A. Walton (Naturkunde Museum, Berlin) for the constructive comments and suggestions. We would like to dedicate this chapter to the inspiring work of Algirdas Dagys and Wolfgang Weitschat on intraspecific variation in Triassic ammonoids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth De Baets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Baets, K., Bert, D., Hoffmann, R., Monnet, C., Yacobucci, M., Klug, C. (2015). Ammonoid Intraspecific Variability. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_9

Download citation

Publish with us

Policies and ethics