Skip to main content

The Body Chamber Length Variations and Muscle and Mantle Attachments in Ammonoids

  • Chapter
  • First Online:

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

The varying body chamber lengths and the different attachment of muscles and mantle to conch wall belong to the major adaptations to their diverse modes of locomotion. Therefore, these traits are indirect indicators of different life styles. The sparse record of ammonoid body chamber lengths and attachment marks has impeded the understanding of this aspect of ammonoid paleobiology. The examination of body chamber length revealed that the decrease of the ammonitella body chamber lengths shows is the long-term trend characterizing the evolutionary development of the Goniatitida–Prolecanitida–Ceratitida–Phylloceratida branch of the Ammonoidea. The analysis of the body chamber lengths and the attachment marks leads to conclusion that a precondition for the jet-powered swimming of ammonoids is less than one whorl body chamber length and the position of the attachment marks in sites from where the cephalic retractor and funnel retractor muscles would be able to extend straight across to the head and to the funnel. This is the case of goniatitids and ammonitids possessing moved forward large ventrolateral muscle marks; jet-powered swimming is highly probable for them. None of the universal small dorsal, umbilical and ventral marks may be left in the attachment sites of the cephalic retractor and funnel retractor muscles. In the hook-shaped terminal body chambers of heteromorph ammonoids, like Audouliceras, the long tongue-like umbilical marks perhaps indicate the moved forward strong umbilical muscles adapted for regular change of the mantle cavity volume for sucking and filtering seawater. This suggests that such ammonoids fed on fine plankton or suspended organic rich substance. Their irregular coiled spiral shells, best suited to floating and perhaps vertical (diurnal) migrations, support the view above. The fossilized mantle so far described in the ceratitid ammonoid Austrotrachyceras has a laminated structure fibrous seen in internally shelled Jurassic belemnotheutis and Loligosaepia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arthaber GV (1911) Die Trias von Albanian. Beitr Paläont Geol Öster-Ungarns und des Orients 24:169–277

    Google Scholar 

  • Arthaber GV (1928) Ammonoidea Leiostraca aus der oberen Trias von Timor. 2. Nederl Timor Expeditie 1916 onder Leiding von Dr. H. A. Brouwer. Jarb Mijnw Nederl Oost-Indiës 55(2):1–174

    Google Scholar 

  • Bandel K (1982) Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies 7:1–198

    Google Scholar 

  • Bockwinkel J, Becker RT, Ebbighausen V (2002) Morphometry and taxonomy of lower Famennian Sporadoceratidae (Goniatitida). Abh Geol BA 57:279–297

    Google Scholar 

  • Bogoslovskaya MF (1959) Internal shell structure of some Artinskian ammonoids. Paleontol Zh 1:49–57

    Google Scholar 

  • Bogoslovsky BI (1976) Early ontogeny and origin of clymeniids. Palaeont Zh 2:41–51

    Google Scholar 

  • Chamberlain JA (1980) The role of body extension in cephalopod locomotion. Palaeontology 23:445–461

    Google Scholar 

  • Chamberlain JA (1993) Locomotion in ancient seas: constraint and opportunity in cephalopod adaptive design. Geobios Mem Spéc 15:49–61

    Article  Google Scholar 

  • Crick GC (1898) On the muscular attachment of the animal to its shell in some Cephalopoda (Ammonoidea). Trans Linn Soc London (2) Zool 7:71–113

    Article  Google Scholar 

  • Dagys AS, Keupp H (1998) Internal ventral keels in Triassic ceratid ammonoids: description and functional interpretation as muscle scars. [Interne Ventralleisten bei ceratitischen Ammonoiden der Trias: Beschreibung und funktionale Interpretation als Muskelansätze.]. Z Dt Geol Ges 149:81–89

    Google Scholar 

  • Diener C (1916a) Einiges über Terminologie und Entwicklung der Lobenelemente in der Ammonitensutur. Centralbl Min Geol Paläont 23(8):553–568; 24:578–592

    Google Scholar 

  • Diener C (1916b) Bemerkungen über die Inzisionen der Suturlinie als Grundlage einer natürlichen Klassifikation der Ammoniten. Centralbl Min Geol Paläont 15:374–381

    Google Scholar 

  • Doguzhaeva LA (1981) The wrinkle layer in the shell of ammonoids. Paleont Zh 1:38-48 [In Russian]

    Google Scholar 

  • Doguzhaeva LA (1986) How long did ammonites live? Science USSR 3:113–117

    Google Scholar 

  • Doguzhaeva LA (1988) Siphuncular tube and septal necks in ammonoid evolution. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Doguzhaeva LA (1990) Analysis of shell growth of ammonoids. Trudy Paleont. Inst. USSR 243:15-28 [In Russian]

    Google Scholar 

  • Doguzhaeva LA (2002) Adolescent bactritoid, orthoceroid, ammonoid and coleoid shells from the upper Carboniferous and lower Permian of South Urals. Abh Geol B-A 57:9–55

    Google Scholar 

  • Doguzhaeva LA (2012) Functional significance of parabolae, interpreted on the basis of shell morphology, ultrastructure and chemical analyses of the Callovian ammonite Indosphinctes (Ammonoidea: Perisphinctidae), Central Russia. Rev Paléobiol, Genéve, spec vol 11:89–101.

    Google Scholar 

  • Doguzhaeva LA (2014) Muscle and mantle attachment marks as well as body chamber lengths indicative of diverse life styles of coexisted Aptian ammonites of the Russian Platform. In: Klug C, Fuchs D (eds) Intern Symp Cephalopods present and past in combination with the 5th Intern Symp Coleoid cephalopods through time Abstracts and program. Univ Zurich

    Google Scholar 

  • Doguzhaeva LA, Kabanov GK (1988) Muscle scars in ammonoids. Dokl Akad Nauk USSR 301:210–212

    Google Scholar 

  • Doguzhaeva LA, Mikhailova IA (1991) New data on muscle system of heteromorph ammonites. Dokl Akad Nauk USSR 318:981–984

    Google Scholar 

  • Doguzhaeva LA, Mikhailova IA (2002) The jaw apparatus of the heteromorphic ammonite Australiceras whitehouse, 1926 (Mollusca: Cephalopoda) from the Aptian of the Volga Region. Dokl Akad Nauk USSR 382:38–40

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1989) Ptychoceras - a heteromorphic lytoceratid with truncated shell and modified ultrastructure (Mollusca: Ammonoidea). Palaeontogr A 208:91–121

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1990) Radula, aptychi and counter-aptychi in Cretaceous ammonite Aconeceras. Dokl Akad Nauk USSR 313:192–195

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1991) Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars. Palaeontogr A 218:17–33

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1992) Radula of Early Cretaceous ammonite Aconeceras (Mollusca: Cephalopoda). Palaeontogr A 223:167–177

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1993a) Shell ultrastructure, muscle scars, and buccalapparatus in ammonoids. Geobios 15:111–119

    Article  Google Scholar 

  • Doguzhaeva LA, Mutvei H (1993b) Structural features in Cretaceous ammonoids indicative of semi-internal or internal shells. In: House MH (ed) The Ammonoidea Environment, Ecology, and Evolutionary Change. Syst Ass Special Vol 47: 99–114. Clarendon Press Oxford

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (1996) Attachment of the body to the shell in Ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology, Topics in Geobiology 13:43–63. Plenum Press New York and London

    Google Scholar 

  • Doguzhaeva LA, Mutvei H, Summesberger H & Dunca E (2004) Bituminous soft body tissues in Late Triassic ceratitid Austrotrachyceras Mitt Geol-Paläont Inst Univ Hamburg 88:37–50

    Google Scholar 

  • Doguzhaeva LA, Mutvei H (2015) The additional external shell layers indicative of “endocochleate experiments” in some ammonoids.This volume

    Google Scholar 

  • Doguzhaeva LA, Summesberger H (2012) Pro-ostraca of Triassic belemnoids (Cephalopoda) from Northern Calcareous Alps, with observations on their mode of preservation in an environment of northern Tethys which allowed for carbonization of non-biomineralized structures. N Jahrb Geol Paläont Abh 266:31–38

    Article  Google Scholar 

  • Doguzhaeva LA, Mapes RH, Mutvei H (2002) Early Carboniferous coleoid Hematites Flower & Gordon, 1959 (Hematitida ord. nov.) from Midcontinent (USA). Abh Geol B-A 57:299–320

    Google Scholar 

  • Doguzhaeva LA, Mapes RH, Mutvei H (2003) The shell and ink sac morphology and ultrastructure of the Late Pennsylvanian cephalopod Donovaniconus and its phylogenetic significance. Berl Paläobiol Abh 3:61–78

    Google Scholar 

  • Doguzhaeva LA, Mutvei H, Summesberger H, Dunca E (2004) Bituminous soft tissues in the body chamber of the Late Triassic ceratitid Austrotrachyceras from the Austrian Alps. Mitt Geol-Paläont Inst Univ Hamburg 88:37–50

    Google Scholar 

  • Doguzhaeva LA, Summesberger H, Mutvei H (2006) An unique Upper Triassic coleoid from the Austrian Alps reveals pro-ostracum and mandible ultrastructure. Acta Univ Carolinae Geol 49:69–82

    Google Scholar 

  • Doguzhaeva LA, Summesberger H, Mutvei H, Brandstaetter F (2007a) The mantle, ink sac, ink, arm hooks and soft body debris associated with the shells in Late Triassic coleoid cephalopod Phragmoteuthis from the Austrian Alps. Palaeoworld 16:272–284

    Article  Google Scholar 

  • Doguzhaeva LA, Mapes RH, Summesberger H, Mutvei H (2007b) The preservation of body tissues, shell, and mandibles in the ceratitid ammonoid Austrotrachyceras (Late Triassic), Austria. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods present and past new insights and fresh perspectives. Springer, Dordrecht

    Google Scholar 

  • Doguzhaeva LA, Bengtson SM, Mutvei H (2010) Structural and morphological indicators of mode of life in the Aptian lytoceratid ammonoid Eogaudryceras. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo

    Google Scholar 

  • Drushchits VV, Doguzhaeva LA (1981) Ammonoids in electron microscope (internal shell structure and systematics of Mesozoic phylloceratids, lytoceratids and six families of the Early Cretaceous ammonitids). Moscow State University Press, Moscow

    Google Scholar 

  • Drushchits VV, Doguzhaeva LA, Mikhailova IA (1978) Unusual coating layers in ammonoids. Paleont Zh 2:36–44 [In Russian]

    Google Scholar 

  • Griffith J (1977) The Upper Triassic fishes from Polzberg bei Lunz. Zool J Linnean Soc 60:1–93

    Article  Google Scholar 

  • Griffin LE (1900) The anatomy of Nautilus pompilius. Mem Nat Acad Sci 8:101–230

    Google Scholar 

  • Haug E (1898) Études sur les goniatites. Mém Soc Geol France, Paléont 7(4). Mém 18:1–112

    Google Scholar 

  • Henderson RA (1984) A muscular attachment proposal for septal function in Mesozoic ammonites. Palaeontology 27:461–486

    Google Scholar 

  • Hewitt RA, Checa A, Westermann GEG, Zaborski PMP (1991) Chamber growth in ammonites inferred from colour markings and naturally etched surfaces of Cretaceous vascoceratids from Nigeria. Lethaia 24:271–284

    Article  Google Scholar 

  • Hoffmann R (2010) New insights on the phylogeny of the Lytoceratoidea (Ammonitina) from the septal lobe and its functional interpretation. Rev Paléobiol 29(1):1–156

    Google Scholar 

  • Ivanov AN (1975) Late ontogeny in ammonoids, and its specific features in macro-, micro- and megaconchs. Scientific notes Yaroslavl Pedagogical Inst, Geol and Paleont 87:5–57 [In Russian]

    Google Scholar 

  • Jacobs DK, Chamberlain JA Jr (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology, Topics in Geobiology 13:169–224

    Google Scholar 

  • Jones DL (1961) Muscle attachment impressions in a Cretaceous ammonite. J Paleont 35:502–504

    Google Scholar 

  • Jordan R 1968 Zur Anatomie mesozoischer Ammoniten nach den Strukturelementen der Gehäuse-Innenwand. Beih Geol Jahrb 77:1–64

    Google Scholar 

  • Kakabadze MV, Sharikadze MZ (1993) On the mode of life of hetemmorph ammonites (heterocone, ancylocone, ptychocone). Geobios 15:209–215

    Article  Google Scholar 

  • Kar AJ, Briggs DEG, Donovan DT (1995) Decay and fossilization of non-mineralized tissue in coleoid cephalopods. Palaeontology 38:105–131

    Google Scholar 

  • Kennedy WJ, Cobban WA (1976) Apects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeon 17:1–64

    Google Scholar 

  • Kennedy WJ, Cobban WA, Klinger HC (2002) Muscle attachment and mantle-related features in Upper Cretaceous Baculites from the United States Western Interior. Abh Geol B-A 57:89–112

    Google Scholar 

  • Keupp H (2000) Ammoniten. Paläobiologische Erfolgsspiralen. Thorbecke, Stuttgart

    Google Scholar 

  • Kier WM (1988) The arrangement and function of molluscan muscle. In: Trueman ER, Clarke MR (eds) The Mollusca. vol 11. Form and Function. Academies Press, San Diego

    Google Scholar 

  • Kier WM, Thompson JT (2003) Muscle arrangement, function and specialization in Recent coleoids. In: Warnke K, Keupp H, Boletzky S v (eds) Coleoid cephalopods through time. Berl Paläobiol Abh 3:141–162

    Google Scholar 

  • Klug C (2004) Mature modifications, the black band, the black aperture, the black stripe, and the periostracum in cephalopods from the Upper Muschelkalk (Middle Triassic, Germany). Mitt Geol-Paläont Inst Univ Hamburg 88:63–78

    Google Scholar 

  • Klug C, Korn D, Richter U, Urlichs M (2004) The black layer in cephalopods from the German Muschelkalk (Middle Triassic). Palaeontolology 47:1407–1425

    Article  Google Scholar 

  • Klug C, Montenari M, Schultz H, Ulrichs M (2007) Soft-tissue attachment of Middle Triassic Ceratitida from Germany. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods present and past. New Insights and fresh perspectives. 6th intern symp cephalopods—present and past. Springer, Dordrecht

    Google Scholar 

  • Klug C, Meyer E, Richter U, Korn D (2008) Soft-tissue imprints in fossil and Recent cephalopod septa and septum formation. Lethaia 41:477–492

    Article  Google Scholar 

  • Korn D, Klug C (2007) Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods—present and past. New insights and fresh perspectives. 6th International Symposium. Springer, Dordrecht

    Google Scholar 

  • Kröger B (2002) On the ability of withdrawing of some Jurassic ammonoids. Abh Geol B-A 57:199–204

    Google Scholar 

  • Kyuma Y, Nishida T (1987) Akiyoshiceras, a new neoicoceratid ammonoid genus from the Upper Carboniferous of Akiyoshi. Bull Akiyoshi-dai Mus Nat Hist 22:23–41

    Google Scholar 

  • Kulicki C, Doguzhaeva LA (1994) Development and calcification of the ammonitella shell. Acta Palaeontol Pol 39:17–44

    Google Scholar 

  • Kulicki C, Landman NH, HeaneyMJ, Mapes RH, Tanabe K (2002) Morphology of the early whorls of Goniatites from the Carboniferous Buckhorn Asphalt (Oklahoma) with aragonitic preservation. Abh Geol B-A 57:205–224

    Google Scholar 

  • Landman NH, Bandel K (1985) Internal structures in the early whorls of Mesozoic ammonites. Am Mus Novit 2823:1–21

    Google Scholar 

  • Landman NH, Waage KM (1993) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills formaion in South Dakota and Wyoming. Bull Amer Mus Nat Hist 215:1–257

    Google Scholar 

  • Landman NH, Tanabe K, Shigeta Y (1996) Ammonoid embryonic development. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology, Topics in Geobiology 13:343–405

    Google Scholar 

  • Landman NH, Mapes RH, Tanabe K (1999a) Internal features of the embryonic shells of Late Carboniferous Goniatitina. In: Oloriz F, Rodriguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic Press, New York

    Google Scholar 

  • Landman NH, Lane J, Cobban WA, Jorgensen SD, Kennedy WJ, Larson NL (1999b) Impressions of the attachment of the soft body to the shell in Late Cretaceous pachydiscid ammonites from the Western Interior of the United States. Amer Mus Nov 3273:1–31

    Google Scholar 

  • Landman NH, Polizzotto K, Mapes RH, Tanabe K (2006) Cameral membranes in prolecanitid and goniatitid ammonoids from the Permian Arcturus Formation, Nevada, USA. Lethaia 39:365–379

    Article  Google Scholar 

  • Landman NH, Johnson RO, Garb MP, Edwards LE, Kyte FT (2007) Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic coastal plain, with a description of the highest ammonite zones in North America. Part 3. Manasquan River Basin, Monmouth country, New Jersey. Bull Amer Mus Nat Hist 303:1–122

    Article  Google Scholar 

  • Landman NH, Mapes RH, Cruz C (2010) Jaws and soft tissues in ammonoids from the Lower Carboniferous (Upper Mississippian) Bear Gulch Beds, Montana, USA. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo

    Google Scholar 

  • Matsuoka A, Anso J, Nakada K, Terabe K, Sato T (2010) Biometrical analysis on primary rib number of the middle Jurassic ammonoids Pseudoneuqueniceras yokoyamai (Kobayashi & Fukuda) and its allied forms. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo

    Google Scholar 

  • Mitta VV, Starodubceva IA (2000) Stchirowsky and study of the Mesozoic in Alatyr-Kurmush area (Basin of the Middle Volga). VernadskyMus-Nov 5:1–20

    Google Scholar 

  • Monks N, Young JR (1998) Body position and the functional morphology of Cretaceous heteromorph ammonites. Palaeontol Electronica 1.1.1A. http://palaeo-electronica.org/1998_1/monks/text.pdf

  • Münster GGz (1839) Beiträge zur Petrefaktenkunde mit XVIII nach der Natur gezeichneten Tafeln der Herren Hermann v. Meyer und Professor Rudolph Wagner. Buchner’sche Buchhandlung, Bayreuth

    Google Scholar 

  • Mutvei H (1957) On the relations of the principal muscles to the shell in Nautilus and some fossil nautiloids. Arkiv Mineral Geol 2:219–254

    Google Scholar 

  • Mutvei H (1964) Remarks on the anatomy of Recent and fossil Cephalopoda. Stockholm Contr Geol 11:79–102

    Google Scholar 

  • Mutvei H (2013) Characterization of nautiloid orders Ellesmerocerida, Oncocerida, Tarphycerida, Discosorida and Ascocerida: new superorder Multiceratoidea. GFF 135:171–183. doi: 10.1080/11035897.2013.801034

    Article  Google Scholar 

  • Mutvei H, Doguzhaeva LA (1997) Shell ultrastructure and ontogenetic growth in Nautilus pompilius L. (Mollusca: Cephalopoda). Palaeontogr A 246:33–52

    Google Scholar 

  • Mutvei H, Dunca E (2007) Connecting ring ultrastructure in the Jurassic ammonoid Quenstedtoceras with discussion on mode of life of ammonoids. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods present and past. New insights and fresh perspectives. Springer, Dordrecht

    Google Scholar 

  • Mutvei H, Reyment RA (1973) Buoyancy control and siphuncle function in ammonoids. Palaeontology 16:623–636

    Google Scholar 

  • Mutvei H, Arnold JM, Landman NH (1993) Muscles and attachment of the body to the shell in embryos and adults of Nautilus belauensis (Cephalopoda). Amer Mus Nov 3059:1–15

    Google Scholar 

  • Obata I, Futakami M, Kawashita Y, Takahashi T (1978) Apertural features in some Cretaceous ammonites from Hokkaido. Bull Nat Sci Mus C 4:139–155

    Google Scholar 

  • O’Dor RK, Forsythe J, Webber DM, Wells J, Wells MJ (1990) Activity levels of Nautilus in the wild. Nature 362:626–627

    Google Scholar 

  • Rakús M (1978) Sur l’existence de deux types distincts d’empreintes de muscles rétracteurs chez les ammonites. Bull Soc Vaudoise Sci Nat 354(74):139–145

    Google Scholar 

  • Richter U (2002) Gewebeansatz-Strukturen auf Steinkernen von Ammonoideen. Geol Beitr Hannover 4:1–113

    Google Scholar 

  • Richter U, Fischer R (2002) Soft tissue attachment structures on pyritized internal moulds of ammonoids. Abh Geol B-A 57:139–149

    Google Scholar 

  • Ruzhencev VE (1956) Early Permian ammonoids from south Urals. II. The ammonoids of the Artinskya Stage. Trudy Paleont Inst USSR 60:1–275 [in Russian]

    Google Scholar 

  • Ruzhencev VE (1962) General Part. In: Ruzencev VE (ed) Superorder Ammonoidea. Mollusca, Cephalopoda I. Osnovy Paleontologii. USSR Academy of Sciences, Moscow [In Russian]

    Google Scholar 

  • Sasaki T, Shigeno S, Tanabe K (2010) Anatomy of living Nautilus: Reevaluation of primitiveness and comparison with Coleoidea. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo

    Google Scholar 

  • Saunders WB, Shapiro EA (1986) Calculation and simulation of ammonoid hydrostatics. Paleobiol 12:64–79

    Google Scholar 

  • Saunders WB, Work DM (1997) Evolution of shell morphology and sutures complexity in Paleozoic prolecanitids, the rootstock of Mesozoic ammonoids. Paleobiol 23:301–325

    Google Scholar 

  • Sharikadze MZ, Lominadze TA, Kvantaliani IV (1990) Systematische Bedeutung von Muskelabdrucken spätjurassischer Ammonoideae. Z geol Wiss 18:1031–1039

    Google Scholar 

  • Shigeta Y, Weitschat W (2004) Origin of the Ammonitina (Ammonoidea) inferred from the internal shell structures. Mitt Geol-Paläontol Inst Univ Hamburg 88:179–194

    Google Scholar 

  • Shigeta Y, Izukura M (2013) The earliest Cenomanian ammonoid Tanabeceras yezoense (Shigeta) from the Hobetsu area, Hokkaido. Bull Hobetsu Mus 28:1–6

    Google Scholar 

  • Shulga-Nesterenko MI (1925) Internal shell structure of the Artinskian ammonites. Bull Moskovskogo obsh’estva ispytatelej prirody. Otd Geol 4(1–2):81–100

    Google Scholar 

  • Stenzel HB (1964) Living Nautilus. In: Moore R (ed) Treatise on invertebrate paleontology, Mollusca 3: K59-K93. Geological Society and University of Kansas Press, Lawrence, KS

    Google Scholar 

  • Suess E (1865) Über Ammoniten. Sitzungsber kaiserl Akad Wiss, Wien 52:3–19

    Google Scholar 

  • Tanabe K, Landman NH, Mapes RH (1998) Muscle attachment scars in a Carboniferous goniatite. Paleont Res 2(2):130–136

    Google Scholar 

  • Trueman AE (1941) The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Q J Geol Soc 384:339–383

    Google Scholar 

  • Vogel KP (1959) Zwergwuchs bei Polyptychiten (Ammonoidea). Geol Jb 76:469–540

    Google Scholar 

  • Weitschat W (1986) Phosphatisierte Ammonoideen aus der Mittleren Trias von Central-Spitzbergen. Mitt Geol-Paläont Inst Univ Hamburg 61:249–279

    Google Scholar 

  • Weitschat W, Bamdel K (1991) Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontol Z 65:269–303

    Google Scholar 

  • Wells MJ (1988) The mantle muscle and mantle cavity in cephalopods. In: Truman ER, Clarke MR (eds) The Mollusca, form and function 11. Academies Press, London

    Google Scholar 

  • Wells MJ, O’Dor RK (1991) Jet propulsion and the evolution of cephalopods. Bull Mat Sci 49:419–432

    Google Scholar 

  • Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Topics in Geobiology 13: 607–707. Springer US

    Google Scholar 

  • Westermann GEG, Tsujita J (1999) Life habits of ammonoids. In: Savazzi E (ed) Morphology of invertebrate skeleton. Wiley, Chichester

    Google Scholar 

  • Zaborski PMP (1986) Internal mould markings in a Cretaceous ammonite from Nigeria. Palaeontology 29:725–738

    Google Scholar 

  • Zakharov JD (1974) New data on internal shell structures in Carboniferous, Triassic and Cretaceous ammonoids. Paleontol Zh 8(1):25–36

    Google Scholar 

  • Zakharov JD (1978) Lower Triassic ammonoids of East USSR. Nauka, Moscow

    Google Scholar 

Download references

Acknowledgements

We would like to thank Christian Klug (University of Zurich) and Dieter Korn (Museum of Natural History, Berlin) for giving us an impetus to prepare this article and Neil H. Landman (New York) for his review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa A. Doguzhaeva .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Table A.1 The angular body chamber length of Paleozoic and Mesozoic ammonoid genera (abbreviations of ages: D-Devonian; C-Carboniferous; P-Permian; T-Triassic; J-Jurassic; K-Cretaceous; the subscript numbers 1 to 3 in combination with D, T and J mean early, middle and late; the subscript numbers 1 and 2 in combination with C, P and K mean early and late)

Apendix 2

Table A.2 Record of mantle and body chamber attachment marks Abbreviations of ages: D-Devonian; C-Carboniferous; P-Permian; T-Triassic; J-Jurassic; K-Cretaceous; the subscript numbers 1 to 3 in combination with D, T and J mean early, middle and late; the subscript numbers 1 and 2 in combination with C, P and K mean early and late (for further abbreviations see Terminology and abbreviations)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doguzhaeva, L., Mapes, R. (2015). The Body Chamber Length Variations and Muscle and Mantle Attachments in Ammonoids. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_14

Download citation

Publish with us

Policies and ethics