Skip to main content

Microwave Pyrolysis of Organic Wastes for Syngas-Derived Biopolymers Production

  • Chapter
  • First Online:
Book cover Production of Biofuels and Chemicals with Microwave

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 3))

Abstract

Bioplastics production is a growing industry that offers an alternative to that of conventional fossil-derived plastics. Polyhydroxyalkanoates are biopolymers whose thermo-mechanical properties can be comparable to those of conventional plastics. Polyhydroxyalkanoates can be produced through the bacterial fermentation of carbon substrates, although to be commercially viable cheap renewable resources such as syngas (CO + H2 + CO2) from waste pyrolysis are required. Microwave pyrolysis has been demonstrated to have the potential of maximising both the gas production and syngas concentration. Hence it is an appropriate thermochemical route for further syngas fermentation . A combination of different factors, such as the type of waste, the moisture content, the pyrolysis temperature or the use of a microwave receptor makes microwave pyrolysis highly versatile, so that the syngas produced can be virtually tailored to the specific requirements of the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The gas fraction from pyrolysis and gasification can be mainly composed by syngas, being mixed with other gases such light hydrocarbons. Although syngas is strictly known as the mixture of H2 and CO, the CO2 resulting from pyrolysis of biowaste can also be fermented by some bacteria to produce biopolymers. Therefore, from now on, syngas will be referred to the mixture of H2, CO and CO2, being the gas fraction rich in syngas if the syngas concentration is greater than 80 vol%.

References

  1. European Bioplastics (2014) Frequently asked questions on bioplastics

    Google Scholar 

  2. Plastics Europe (2013) Plastics—the facts 2013

    Google Scholar 

  3. Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of Polyhydroxyalkanoates. J Polym Environ 21(2):580–605

    Article  Google Scholar 

  4. Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578

    Article  Google Scholar 

  5. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247

    Article  Google Scholar 

  6. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Article  Google Scholar 

  7. Loo C-Y, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2(2):31–57

    Google Scholar 

  8. European Bioplastics (2014) Bioplastics facts and figures

    Google Scholar 

  9. The Freedonia Group (2009) World bioplastics

    Google Scholar 

  10. Snell KD, Peoples OP (2009) PHA bioplastic: a value-added coproduct for biomass biore-fineries. Biofuels, Bioprod Biorefin 3(4):456–467

    Article  Google Scholar 

  11. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25(2):148–175

    Article  Google Scholar 

  12. Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Chen GG-Q (ed) Plastics from bacteria, microbiology monographs, vol 14. Springer, Berlin, pp 85–119

    Chapter  Google Scholar 

  13. Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev 15(9):4255–4273

    Article  Google Scholar 

  14. Tirado-Acevedo O, Chinn MS, Grunden AM (2010) Production of biofuels from synthesis gas using microbial catalysts (Chap. 2). In: Allen IL, Sima S, Geoffrey MG (eds) Advances in applied microbiology, vol 70. Academic Press, London, pp 57–92

    Google Scholar 

  15. Younesi H, Najafpour G, Mohamed AR (2005) Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J 27(2):110–119

    Article  Google Scholar 

  16. Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a com-parison of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energy 31(2):219–224

    Article  Google Scholar 

  17. Chang I-S, Kim B-H, Kim D-H, Lovitt RW, Sung H-C (1999) Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium. J Biosci Bioeng 88(6):682–685

    Article  Google Scholar 

  18. Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA (2007) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-β-hydroxyalkanoate. Biotechnol Bioeng 97(2):279–286

    Article  Google Scholar 

  19. Choi D, Chipman D, Bents S, Brown R (2010) A techno-economic Analysis of Polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl Biochem Biotechnol 160(4):1032–1046

    Article  Google Scholar 

  20. Weaver PF, Maness PC (1993) Photoconversion of gasified organic materials into biologically-degradable plastics. US Patent 5250427 A

    Google Scholar 

  21. Köpke M, Mihalcea C, Liew FM, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475

    Article  Google Scholar 

  22. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634

    Article  Google Scholar 

  23. Fernandez-Akarregi AR, Makibar J, Lopez G, Amutio M, Olazar M (2013) Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis. Fuel Process Technol 112:48–56

    Article  Google Scholar 

  24. Gaddy JL (2000) Biological production of ethanol from waste gases with Clostridium ljungdahlii. US Patent 6136577 A

    Google Scholar 

  25. Worden RM, Grethlein AJ, Zeikus JG, Datta R (1989) Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Appl Biochem Biotechnol 20–21(1):687–698

    Article  Google Scholar 

  26. Grethlein AJ, Worden RM, Jain MK, Datta R (1990) Continuous production of mixed alcohols and acids from carbon monoxide. Appl Biochem Biotechnol 24–25(1):875–884

    Article  Google Scholar 

  27. Heiskanen H, Virkajärvi I, Viikari L (2007) The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme Microb Technol 41(3):362–367

    Article  Google Scholar 

  28. Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol 40(5):1234–1243

    Article  Google Scholar 

  29. Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb Technol 44(5):281–288

    Article  Google Scholar 

  30. Huhnke RL, Lewis RS, Tanner RS (2006) Indirect or direct fermentation of biomass to fuel alcohol. US Patent 20070275447 A1

    Google Scholar 

  31. Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55(5):2085–2091

    Article  Google Scholar 

  32. Phillips JR, Klasson KT, Clausen EC, Gaddy JL (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39–40(1):559–571

    Article  Google Scholar 

  33. Clausen EC, Gaddy JL (1992) Clostridium ljungdahlii, an anaerobic ethanol and acetate producing microorganism. US Patent 5173429 A

    Google Scholar 

  34. Phillips J, Clausen E, Gaddy J (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Biochem Biotechnol 45–46(1):145–157

    Article  Google Scholar 

  35. Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng 109(5):492–498

    Article  Google Scholar 

  36. Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”. Bioresour Technol 102(10):5794–5799

    Article  Google Scholar 

  37. Chang I-S, Kim D-H, Kim B-H, Shin P-K, Sung H-C, Lovitt R-W (1998) CO fermentation of Eubacterium limosum KIST612. J Microbiol Biotechnol 8(2):134–140

    Google Scholar 

  38. Sakai S, Nakashimada Y, Inokuma K, Kita M, Okada H, Nishio N (2005) Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture. J Biosci Bioeng 99(3):252–258

    Article  Google Scholar 

  39. Solomon PR, Serio MA, Suuberg EM (1992) Coal pyrolysis: experiments, kinetic rates and mechanisms. Prog Energ Combust 18(2):133–220

    Article  Google Scholar 

  40. Horne PA, Williams PT (1996) Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75(9):1051–1059

    Article  Google Scholar 

  41. Payakkawan P, Areejit S, Sooraksa P (2014) Design, fabrication and operation of continuous microwave biomass carbonization system. Renew Energ 66:49–55

    Article  Google Scholar 

  42. Appleton TJ, Colder RI, Kingman SW, Lowndes IS, Read AG (2005) Microwave technology for energy-efficient processing of waste. Appl Energ 81(1):85–113

    Article  Google Scholar 

  43. Arenillas Y, Fernández A, Menéndez JÁ (2011) Microwave heating applied to pyrolysis. In: Advances in induction and microwave heating of mineral and organic materials, Stanislaw Grundas, Lublin

    Google Scholar 

  44. Domínguez A, Fernández Y, Fidalgo B, Pis JJ, Menéndez JA (2008) Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere 70(3):397–403

    Article  Google Scholar 

  45. Luque R, Menendez JA, Arenillas A, Cot J (2012) Microwave-assisted pyrolysis of biomass feedstocks: the way forward? Energy Environ Sci 5(2):5481–5488

    Article  Google Scholar 

  46. Menéndez JA, Domínguez A, Inguanzo M, Pis JJ (2005) Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: vitrification of the solid residue. J Anal Appl Pyrol 74(1–2):406–412

    Article  Google Scholar 

  47. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2013) Microwave pyrolysis of microalgae for high syngas production. Bioresour Technol 144:240–246

    Article  Google Scholar 

  48. Tian Y, Zuo W, Ren Z, Chen D (2011) Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresour Technol 102(2):2053–2061

    Article  Google Scholar 

  49. Menéndez JA, Domı́nguez A, Inguanzo M, Pis JJ (2004) Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J Anal Appl Pyrol 71(2):657–667

    Article  Google Scholar 

  50. Lam SS, Russell AD, Lee CL, Lam SK, Chase HA (2012) Production of hydrogen and light hydrocarbons as a potential gaseous fuel from microwave-heated pyrolysis of waste automotive engine oil. Int J Hydrogen Energy 37(6):5011–5021

    Article  Google Scholar 

  51. Huang YF, Kuan WH, Lo SL, Lin CF (2010) Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresour Technol 101(6):1968–1973

    Article  Google Scholar 

  52. Zhao X, Song Z, Liu H, Li Z, Li L, Ma C (2010) Microwave pyrolysis of corn stalk bale: a promising method for direct utilization of large-sized biomass and syngas production. J Anal Appl Pyrol 89(1):87–94

    Article  Google Scholar 

  53. Clark DE, Sutton WH (1996) Microwave processing of materials. Annu Rev Mater Sci 26(1):299–331

    Article  Google Scholar 

  54. Robinson JP, Kingman SW, Barranco R, Snape CE, Al-Sayegh H (2009) Microwave pyrolysis of wood pellets. Ind Eng Chem Res 49(2):459–463

    Article  Google Scholar 

  55. Motasemi F, Afzal MT, Salema AA, Mouris J, Hutcheon RM (2014) Microwave dielectric characterization of switchgrass for bioenergy and biofuel. Fuel 124:151–157

    Article  Google Scholar 

  56. Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91(1):1–8

    Article  Google Scholar 

  57. Menéndez JA, Domínguez A, Fernández Y, Pis JJ (2006) Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls. Energy Fuels 21(1):373–378

    Article  Google Scholar 

  58. Menéndez JA, Juárez-Pérez EJ, Ruisánchez E, Bermúdez JM, Arenillas A (2011) Ball light-ning plasma and plasma arc formation during the microwave heating of carbons. Carbon 49(1):346–349

    Article  Google Scholar 

  59. Domínguez A, Menéndez JA, Fernández Y, Pis JJ, Nabais JMV, Carrott PJM, Carrott MMLR (2007) Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. J Anal Appl Pyrol 79(1–2):128–135

    Article  Google Scholar 

  60. Ferrera-Lorenzo N, Fuente E, Bermúdez JM, Suárez-Ruiz I, Ruiz B (2014) Conventional and microwave pyrolysis of a macroalgae waste from the agar-agar industry. Prospects for bio-fuel production. Bioresour Technol 151:199–206

    Article  Google Scholar 

  61. Fernández Y, Arenillas A, Díez MA, Pis JJ, Menéndez JA (2009) Pyrolysis of glycerol over activated carbons for syngas production. J Anal Appl Pyrol 84(2):145–150

    Article  Google Scholar 

  62. Domínguez A, Menéndez JA, Inguanzo M, Pís JJ (2006) Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour Technol 97(10):1185–1193

    Article  Google Scholar 

  63. Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34(13–14):1639–1651

    Article  Google Scholar 

  64. Zhao X, Wang M, Liu H, Zhao C, Ma C, Song Z (2013) Effect of temperature and additives on the yields of products and microwave pyrolysis behaviors of wheat straw. J Anal Appl Pyrol 100:49–55

    Article  Google Scholar 

  65. Wang X-L, Deng W-Y, Yu W-C, Su Y-X (2013) Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge. J Fuel Chem Technol 41(2):243–251

    Google Scholar 

  66. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2014) Influence of the microwave absorbent and moisture content on the microwave pyrolysis of an organic municipal solid waste. J Anal Appl Pyrol 105:234–240

    Article  Google Scholar 

  67. Gedam V, Regupathi I (2012) Pyrolysis of municipal solid waste for syngas production by microwave irradiation. Nat Resour Res 21(1):75–82

    Article  Google Scholar 

  68. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2014) Syngas from waste valorization for bioplastics production. Paper presented at the 20th international symposium on analytical and applied pyrolysis, Birmingham

    Google Scholar 

  69. Vega JL, Klasson KT, Kimmel DE, Clausen EC, Gaddy JL (1990) Sulfur gas tolerance and toxicity of co-utilizing and methanogenic bacteria. Appl Biochem Biotechnol 24–25(1):329–340

    Article  Google Scholar 

  70. Tian Y, Zhang J, Zuo W, Chen L, Cui Y, Tan T (2013) Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environ Sci Technol 47(7):3498–3505

    Google Scholar 

  71. Klepfer JS, Honeycutt TW, Sharivker V, Tairova G (2001) Process and reactor for micro-wave cracking of plastic materials. US Patent 6184427 B1

    Google Scholar 

  72. Nirmalakhandan N, Arulgnanendran V, Mohsin M, Sun B, Cadena F (1994) Toxicity of mixtures of organic chemicals to microorganisms. Water Res 28(3):543–551

    Article  Google Scholar 

  73. He M, Xiao B, Liu S, Hu Z, Guo X, Luo S, Yang F (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrol 87(2):181–187

    Article  Google Scholar 

  74. Niu M, Huang Y, Jin B, Wang X (2013) Simulation of syngas production from municipal solid waste gasification in a bubbling fluidized bed using Aspen Plus. Ind Eng Chem Res 52(42):14768–14775

    Article  Google Scholar 

  75. Budarin VL, Shuttleworth PS, Dodson JR, Hunt AJ, Lanigan B, Marriott R, Milkowski KJ, Wilson AJ, Breeden SW, Fan J, Sin EHK, Clark JH (2011) Use of green chemical technologies in an integrated biorefinery. Energy Environ Sci 4(2):471–479

    Article  Google Scholar 

  76. Michael S, Joseph C, Marek W, Kanapathipillai W, John F (2012) Pyrolysis yields from microwave-assisted heating of solid wastes. In: 42nd international conference on environmental systems (ICES), American Institute of Aeronautics and Astronautics

    Google Scholar 

  77. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2014) Integrated microwave drying, pyrolysis and gasification for valorisation of organic wastes to syngas. Fuel 132:20–26

    Article  Google Scholar 

  78. Xie LP, Li T, Gao JD, Fei XN Wu X, Jiang YG (2010) Effect of moisture content in sewage sludge on air gasification. J Fuel Chem Technol 38(5):615–620

    Article  Google Scholar 

  79. Xiong S, Zhuo J, Zhang B, Yao Q (2013) Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge. J Anal Appl Pyrol 104:632–639

    Article  Google Scholar 

  80. Zuo W, Tian Y, Ren N (2011) The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge. Waste Manage 31(6):1321–1326

    Article  Google Scholar 

  81. Hu Z, Ma X, Chen C (2012) A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol 107:487–493

    Article  Google Scholar 

  82. Salema AA, Ani FN (2011) Microwave induced pyrolysis of oil palm biomass. Bioresour Technol 102(3):3388–3395

    Article  Google Scholar 

  83. Abubakar Z, Salema AA, Ani FN (2013) A new technique to pyrolyse biomass in a micro-wave system: effect of stirrer speed. Bioresour Technol 128:578–585

    Article  Google Scholar 

  84. Salema AA, Ani FN (2012) Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. J Anal Appl Pyrol 96:162–172

    Article  Google Scholar 

  85. Khaghanikavkani E, Farid MM, Holdem J, Williamson A (2013) Microwave pyrolysis of plastic. J Chem Eng Process Tech 4(3)

    Google Scholar 

  86. Lam SS, Chase HA (2012) A review on waste to energy processes using microwave pyrolysis. Energies 5(10):4209–4232

    Article  Google Scholar 

  87. Stein DF, Edgar RH, Iskander MF, Johnson DL, Johnson SM, Lob CG, Shaw JM, Sutton WH, Tien PK, Munns TE (1994) Microwave processing—an emerging industrial technology? In: MRS proceedings, p 347

    Google Scholar 

  88. Motasemi F, Afzal MT (2013) A review on the microwave-assisted pyrolysis technique. Renew Sust Energ Rev 28:317–330

    Article  Google Scholar 

  89. Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57(45):9225–9283

    Article  Google Scholar 

  90. Metaxas AC, Meredith RJ (1983) Industrial microwave heating, vol 4. IET, London, UK

    Google Scholar 

  91. Moseley JD, Kappe CO (2011) A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 13(4):794–806

    Article  Google Scholar 

  92. Puigjaner L (ed) (2011) Syngas from waste, green energy and technology. Springer, Berlin

    Google Scholar 

  93. Serio MA, Cosgrove JE, Wojtowicz MA, Wignarajah K, Fisher J (2013) A prototype micro-wave pyrolyzer for solid wastes. Paper presented at the 43rd international conference on environmental systems

    Google Scholar 

Download references

Acknowledgments

The research leading to this chapter has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 311815 (SYNPOL project). D. B. also acknowledges the support received from PCTI and FICYT of the Government of the Principado de Asturias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Menéndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beneroso, D., Bermúdez, J.M., Arenillas, A., Menéndez, J.A. (2015). Microwave Pyrolysis of Organic Wastes for Syngas-Derived Biopolymers Production. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Microwave. Biofuels and Biorefineries, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9612-5_6

Download citation

Publish with us

Policies and ethics