Skip to main content

Ediacaran Ecosystems and the Dawn of Animals

  • Chapter
  • First Online:
The Trace-Fossil Record of Major Evolutionary Events

Part of the book series: Topics in Geobiology ((TGBI,volume 39))

Abstract

Ichnology may provide remarkable information for our understanding of Ediacaran paleobiology, illuminating aspects such as the earliest evidence of bilaterians and the nature of Ediacaran ecosystems. The possibility of animal trace fossils in pre-Ediacaran rocks is considered unlikely and, therefore, the target of ichnologic research has moved in recent years to Ediacaran strata that postdate the Gaskiers glaciation. Still, the earliest convincing evidence of bilaterian activity comes from the White Sea Assemblage (less than 560 Ma). Although earlier systematic compilations listed a wide variety of trace fossils for the Ediacaran, including complex trace fossils and scratch marks produced by arthropods, the present view is one of much more reduced global ichnodiversity and ichnodisparity. In fact, a critical reevaluation of the trace-fossil record indicates the presence of only seven categories of architectural designs: simple horizontal trails, passively filled horizontal burrows, actively filled (massive) horizontal burrows, plug-shaped burrows, oval-shaped impressions, rasping traces, and horizontal burrows with horizontal to vertical branches. Microbial mats were critical components in Ediacaran ecosystems and benthic communities developed in direct association with resistant matgrounds. Within this framework, various categories of organisms–microbial mats interactions can be recognized. Mat encrusters and mat stickers are essentially represented by body fossils, but trace-fossil data is key to decipher mat scratchers (organisms rasping on the microbial mats), mat digesters (organisms able to feed from direct external digestion of the mat), mat grazers (organisms browsing through the microbial mat), and undermat miners (organisms that constructed tunnels below the mat). Although integration of ichnologic and sedimentologic information allows discriminating between shallow- and deep-marine benthic communities, limited beta ichnodiversity implies substantial niche overlap during the Ediacaran. Ediacaran sediments displayed almost invariably no bioturbation (BI 0) to very locally sparse bioturbation (BI 1) at the most, with very limited to nonexistent infaunal tiering. Critical evaluation of the available information places the earliest evidence of complex behavior in the treptichnids recorded by the end of the Ediacaran, certainly representing the prelude of the dramatic increase in complexity evidenced by the Cambrian explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almond JE, Buatois LA, Gresse PG, Germs GJB (2008) Trends in metazoan body size, burrowing behaviour and ichnodiversity across the Precambrian–Cambrian boundary: ichnoassemblages from the Vanrhynsdorp Group of South Africa. In: Conference programme and abstracts, 15th biennial meeting of the Palaeontological Society of South Africa, Matjiesfontein, pp 15–20

    Google Scholar 

  • Alpert SP (1977) Trace fossils and the basal Cambrian boundary. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geol J Spec Issue 9:1–8

    Google Scholar 

  • Anderson MM, Misra SB (1968) Fossils found in the Pre-Cambrian Conception Group of South-eastern Newfoundland. Nature 220:680–681

    Article  Google Scholar 

  • Antcliffe JB, Gooday AJ, Brasier MD (2011) Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus. Palaeontology 54:1157–1175

    Article  Google Scholar 

  • Banks NL (1970) Trace fossils from the late Precambrian and Lower Cambrian of Finmark, Norway. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3:19–34

    Google Scholar 

  • Banks NL (1973) Trace fossils in the Halkkavarre section of the Dividal Group (?late Precambrian-Lower Cambrian), Finmark. Norges Geol Unders 288:1–6

    Google Scholar 

  • Becker YR (2010) Geological potential of the oldest ichnofossils in the Late Precambrian stratotype of the South Urals. Reg Geol Metall 43:18–35 (in Russian)

    Google Scholar 

  • Becker YR (2013) Ichnofossils—a new paleontological object in the Late Precam-brian stratotype of the Urals. Litosfera 1:52–80 (in Russian)

    Google Scholar 

  • Bengtson S, Rasmussen R, Krape B (2007) The Paleoproterozoic megascopic Stirling biota. Paleobiology 33:351–381

    Article  Google Scholar 

  • Bergström J (1990) Precambrian trace fossils and the rise of bilaterian animals. Ichnos 1:3–13

    Article  Google Scholar 

  • Billings E (1872) On some fossils from the Primordial rocks of Newfoundland. Can Nat Geol 6:465–479

    Google Scholar 

  • Bottjer DJ, Clapham ME (2006) Evolutionary paleoecology of Ediacaran Benthic marine animals. In: Kaufman J, Xiao, S (eds) Neoproterozoic geobiology and paleobiology. Top Geobiol 27:91–114

    Google Scholar 

  • Bouougri EH, Porada H (2007) Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. J Afr Earth Sci 48:38–48

    Article  Google Scholar 

  • Brasier MD (2009) Darwin’s lost world. Oxford University Press, Oxford

    Google Scholar 

  • Brasier MD, McIlroy D (1998) Neonereites uniserialis from c. 600 Ma year old rocks in western Scotland and the emergence of animals. J Geol Soc Lond 155:5–12

    Article  Google Scholar 

  • Brasier MD, Cowe JW, Taylor ME (1994) Decision on the Precambrian-Cambrian boundary. Episodes 17:3–8

    Google Scholar 

  • Brasier MD, McIlroy D, Liu AG, Antcliffe JB, Menon LR (2013) The oldest evidence of bioturbation on Earth: Comment. Geology 41:e289

    Article  Google Scholar 

  • Bromley RG (1990) Trace fossils. Biology and taphonomy. Unwin Hyman, London

    Google Scholar 

  • Bromley RG (1996) Trace fossils. Biology, taphonomy and applications. Chapman & Hall, London

    Book  Google Scholar 

  • Buatois LA, Mángano MG (2002) Trace fossils from Carboniferous floodplain deposits in western Argentina: implications for ichnofacies models of continental environments. Palaeogeogr Palaeoclimatol Palaeoecol 183:71–86

    Article  Google Scholar 

  • Buatois LA, Almond J, Germs GJB (2013) Environmental tolerance and range offset of Treptichnus pedum: Implications for the recognition of the Ediacaran-Cambrian boundary. Geology 41:519–522

    Google Scholar 

  • Buatois LA, Mángano MG (2003) Early colonization of the deep sea: ichnologic evidence of deep-marine benthic ecology from the Early Cambrian of northwest Argentina. Palaios 18:572–581

    Article  Google Scholar 

  • Buatois LA, Mángano MG. (2004) Terminal Proterozoic–Early Cambrian ecosystems: ichnology of the Puncoviscana Formation, Northwest Argentina. In: Webby BD, Mángano MG, Buatois LA (eds) Trace fossils in evolutionary palaeoecology. Fossils Strata 51:1–16

    Google Scholar 

  • Buatois LA, Mángano MG (2011a) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Buatois LA, Mángano MG (2011b) The Déjà vu effect: recurrent patterns in the exploitation of ecospace, the establishment of the mixed layer, and the distribution of matgrounds. Geology 39:1163–1166

    Article  Google Scholar 

  • Buatois LA, Mángano MG. (2012a) The trace-fossil record of organism-matground interactions in space and time. Noffke N, Chafetz H (eds) Microbial mats in siliciclastic sediments. SEPM Spec Pub 101:15–28

    Google Scholar 

  • Buatois LA, Mángano MG (2012b) An Early Cambrian shallow-marine ichnofauna from the Puncoviscana Formation of northwest Argentina: the interplay between sophisticated feeding behaviors, matgrounds and sea-level changes. J Paleontol 86:7–18

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2013) Ichnodiversity and ichnodisparity: significance and caveats. Lethaia 46:281–292

    Article  Google Scholar 

  • Buatois LA, Mángano MG, Maples CG, Lanier WP (1998) Ichnology of an Upper Carboniferous fluvio-estuarine paleovalley: the Tonganoxie Sandstone, Buildex Quarry, eastern Kansas, USA. J Paleontol 72:152–180

    Article  Google Scholar 

  • Buatois LA, Almond J, Gresse P, Germs G (2007) The elusive Proterozoic-Cambrian boundary: ichnologic data from the Vanrhynsdorp Group of South Africa. In: 9th International ichnofabric workshop, Calgary, Abstract, p 8

    Google Scholar 

  • Buatois LA, Netto R, Mángano MG (2010) Ichnology of late Paleozoic post-glacial transgressive deposits in Gondwana: reconstructing salinity conditions in coastal ecosystems affected by strong meltwater discharge. In: Lopez Gamundi O, Buatois LA (eds) Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geol Soc Am Spec Pap 468:149–173

    Google Scholar 

  • Buatois LA, Narbonne GM, Mángano MG, Carmona NB, Myrow P (2014) Relict ecosystems at the dawn of the Phanerozoic revolution. Nat Commun 5:3544, 5p

    Article  CAS  Google Scholar 

  • Budd GE (2013) At the origin of animals: the revolutionary Cambrian fossil record. Curr Genomics 14:348–349, 353

    Article  CAS  Google Scholar 

  • Budd GE (2015) Early animal evolution and the origin of nervous systems. Philos Trans B 370:20150037

    Article  Google Scholar 

  • Budd GE, Jensen S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biol Rev 75:253–295

    Article  CAS  Google Scholar 

  • Budd GE, Jensen S (2004) The limitations of the fossil record and the dating of the origin of the Bilateria. In: Donoghue PCI, Smith MP (eds) Telling the evolutionary time: molecular clocks and the fossils record. Taylor and Francis, London, pp 166–169

    Google Scholar 

  • Budd GE, Jensen S (in press) The origin of the animals and a ‘Savannah hypothesis for early bilaterian evolution. Biol Rev

    Google Scholar 

  • Cai Y, Hua H, Zhang X (2013) Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte. Precambrian Res 224:255–267

    Article  CAS  Google Scholar 

  • Callow RHT, Brasier MD, McIlroy D (2013) Discussion: “Were the Ediacaran siliciclastics of South Australia coastal or deep marine?” by Retallack et al. Sedimentology 59:1208–1236

    Google Scholar 

  • Carbone C, Narbonne GM (2014) When life got smart: the evolution of behavioral complexity through the Ediacaran and Early Cambrian of NW Canada. J Paleontol 88:309–330

    Article  Google Scholar 

  • Carbone CA, Narbonne GM, Macdonald FA, Boag TH (2015) New Ediacaran fossils from the uppermost Blueflower Formation, northwest Canada: disentangling biostratigraphy and paleoecology. J Paleo 89:281–291

    Google Scholar 

  • Caron JB, Scheltema A, Schander C, Rudkin D (2006) A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature 442:159–163

    Article  CAS  Google Scholar 

  • Chen Z, Zhou C, Meyer M, Xiang K, Schiffbauer JD, Yuan X, Xiao S (2013) Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Res 224:690–701

    Article  CAS  Google Scholar 

  • Chen Z, Zhou C, Xiao S, Wang W, Guan C, Hua H, Yuan X (2014) New Ediacara fossils preserved in marine limestone and their ecological implications. Nat Commun 4:4180, 10 pp

    Google Scholar 

  • Clapham ME, Narbonne GM (2002) Ediacaran epifaunal tiering. Geology 30:627–630

    Article  Google Scholar 

  • Clapham ME, Narbonne GM, Gehling JG (2003) Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:527–544

    Article  Google Scholar 

  • Clemmey H (1976) World’s oldest animal traces. Nature 261:576–578

    Article  Google Scholar 

  • Cloud P, Gustafson LB, Watson JA (1980) The works of living social insects as pseudofossils and the age of the oldest known Metazoa. Science 210:1013–1015

    Article  CAS  Google Scholar 

  • Conway Morris S (2002) Ancient animals or something else entirely? Science 298:57–58

    Article  Google Scholar 

  • Crimes TP (1987) Trace fossils and correlation of late Precambrian and early Cambrian strata. Geol Mag 124:97–119

    Article  Google Scholar 

  • Crimes TP (1992) The record of trace fossils across the Proterozoic-Cambrian boundary. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Plenum Press, New York

    Google Scholar 

  • Crimes TP (1994) The period of early evolutionary failure and the dawn of evolutionary success. In: Donovan SK (ed) The palaeobiology of trace fossils. John Wiley & Sons, Chichester

    Google Scholar 

  • Crimes TP, Anderson MM (1985) Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. J Paleontol 59:310–343

    Google Scholar 

  • Crimes TP, Fedonkin M (1996) Biotic changes in platform communities across the Precambrian Phanerozoic boundary. Riv Ital Pal Strat 102:317–332

    Google Scholar 

  • Dalrymple RW, Narbonne GM (1996) Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic; Windermere Supergroup), Mackenzie Mountains, N.W.T. Can J Earth Sci 33:848–862

    Article  Google Scholar 

  • Darroch SA, Sperling EA, Boag TH, Racicot RA, Mason SJ, Morgan AS, Tweedt S, Myrow P, Johnston DT, Erwin DH, Laflamme M (2015) Biotic replacement and mass extinction of the Ediacara biota. Proc R Soc B 282(1814):20151003

    Article  Google Scholar 

  • Darwin C (1859) On The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • Ding LF, Zhang L, Li Y, Dong J (1992) The study of the Late Sinian–Early Cambrian biotas from the northern margin of Yangtze Platform. Scientific and Technical Documents Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Dornbos SQ (2006) Evolutionary palaeoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian radiation. Palaeogeogr Palaeoclimatol Palaeoecol 237:225–239

    Article  Google Scholar 

  • dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z (2015) Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales. Curr Biol 25:2939–2950

    Article  CAS  Google Scholar 

  • Droser ML, Gehling JG (2008) Synchronous aggregate growth in an abundant new Ediacaran tubular organism. Science 319:1660–1662

    Google Scholar 

  • Droser ML, Gehling JG (2015) The advent of animals: the view from the Ediacaran. Proc Natl Acad Sci U S A 112:4865–4870

    Article  CAS  Google Scholar 

  • Droser ML, Gehling JG, Jensen S (2005). Ediacaran trace fossils: true and false. In: Briggs DEG (ed) Evolving form and function: fossils and development. Spec Pub Peabody Mus Nat Hist, Yale Univ, pp 125–138

    Google Scholar 

  • Droser ML, Gehling JG, Jensen SR (2006) Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeogr Palaeoclimatol Palaeoecol 232:131–147

    Article  Google Scholar 

  • Droser ML, Gehling JG, Dzaugis ME, Kennedy MJ, Rice D, Allen MF (2014) A new Ediacaran fossil with a novel sediment displacive life habit. J Paleontol 88:145–151

    Article  Google Scholar 

  • Dzik J (1999) Organic membranous skeleton of the Precambrian metazoans from Namibia. Geology 27:519–522

    Article  Google Scholar 

  • Elliott DA, Vickers-Rich P, Trusler P, Hall M (2011) New evidence on the taphonomic context of the Ediacaran Pteridinium. Acta Palaeontol Pol 56:641–650

    Article  Google Scholar 

  • Erwin DH (2015) Early metazoan life: divergence, environment and ecology. Philos Trans B 370:20150036

    Article  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science 334:1091–1097

    Google Scholar 

  • Erwin DH, Valentine JW (2013) The Cambrian explosion and the construction of animal biodiversity. Roberts & Company, Colorado

    Google Scholar 

  • Fedonkin MA (1983) The organic world of the Vendian. Itogi Nauki i Tehniki. Seria, Stratigrafia, Paleontologia 12:1–127 (in Russian)

    Google Scholar 

  • Fedonkin MA (1985) Paleoichnology of Vendian metazoa. In: Sokolov BS, Ivanovskiy AB (eds) The Vendian system 1: historic-geological and palaeontological basis. Nauka, Moscow, pp 112–116

    Google Scholar 

  • Fedonkin MA (1990) Systematic description of the Vendian metazoan. In: Sokolov BS, Iwanowski AB (eds) The Vendian System, Vol I. Springer-Verlag, Berlin, pp 71–12

    Google Scholar 

  • Fedonkin MA (2003) Origin of the Metazoa in the light of Proterozoic fossil records. Palaeontol Res 7:9–41

    Article  Google Scholar 

  • Fedonkin MA, Waggoner BM (1997) The late Precambrian fossil Kimberella is a mollusk like bilaterian organism. Nature 388:868–871

    Article  CAS  Google Scholar 

  • Fedonkin MA, Simonetta A, Ivantsov AY (2007) New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran Biota. Geol Soc Lond Spec Pub 286:157–179

    Google Scholar 

  • Fritz WH, Crimes TP (1985) Lithology, trace fossils, and correlation of Precambrian-Cambrian boundary beds, Cassiar Mountains, north-central British Columbia. Geol Surv Can Pap 83–13:1–24

    Google Scholar 

  • Ford TD (1958) Pre-Cambrian fossils from Charnwood Forest. Proc Yorkshire Geol Soc 31(Pt. 3):211–217

    Article  Google Scholar 

  • Gaucher C, Poiré DG, Bossi J, Sánchez Bettucci L, Beri A (2013) Comment on “Bilaterian Burrows and Grazing Behavior at >585 Million Years Ago”. Science 339:906

    Article  CAS  Google Scholar 

  • Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastic Ediacaran masks. Palaios 14:40–57

    Article  Google Scholar 

  • Gehling JG (2000) Sequence stratigraphic context of the Ediacara Member, Rawnsley Quartzite, South Australia: a taphonomic window into the Neoproterozoic biosphere. Precambrian Res 100:65–95

    Article  CAS  Google Scholar 

  • Gehling JG, Droser ML (2009) Textured organic surfaces associated with the Ediacara biota in south Australia. Earth Sci Rev 96:196–206

    Article  CAS  Google Scholar 

  • Gehling JG, Droser ML (2013) How well do fossil assemblages of the Ediacara Biota tell time? Geology 41:447–450

    Article  Google Scholar 

  • Gehling JG, Narbonne GM, Anderson M (2000) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43:427–456

    Article  Google Scholar 

  • Gehling JG, Jensen S, Droser ML, Myrow PM, Narbonne GM (2001) Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geol Mag 138:213–218

    Article  Google Scholar 

  • Gehling JG, Droser M, Jensen S, Runnegar B (2005) Ediacara organisms: relating form to function. In: Briggs DEG (ed) Evolving form and function: fossils and development. Spec Pub Peabody Mus Nat Hist, Yale Univ, pp 43–66

    Google Scholar 

  • Gehling JG, Runnegar BN, Droser ML (2014) Scratch traces of large ediacara bilaterian animals. J Paleontol 88:284–298

    Article  Google Scholar 

  • Geyer G, Uchman A (1995) Ichnofossil assemblages from the Nama Group (Neoproterozoic-Lower Cambrian) in Namibia and the Proterozoic-Cambrian boundary problem revisited. Beringeria Spec Iss 2:175–202

    Google Scholar 

  • Ghisalberti M, Gold DA, Laflamme M, Clapham ME, Narbonne GM, Summons RE, Johnston DT, Jacobs DK (2014) Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes. Curr Biol 24:1–5

    Article  CAS  Google Scholar 

  • Gingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E, Petrash D, Konhauser KO (2011) Possible evolution of mobile animals in association with microbial mats. Nat Geosci 4:372–375

    Google Scholar 

  • de Gibert JM, Ramos E, Marzo M (2011) Trace fossils and depositional environments in the Hawaz Formation, Middle Ordovician, western Libya. J Afr Earth Sci 60:28–37

    Article  Google Scholar 

  • Glaessner MF (1969) Trace fossils from the Precambiran and basal Cambrian. Lethaia 2:369–393

    Article  Google Scholar 

  • Glaessner MF (1984) The dawn of animal life. A biohistorical study. Cambridge University Press, Cambridge

    Google Scholar 

  • Glaessner MF, Wade M (1966) The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9:599–628

    Google Scholar 

  • Gold DA, Runnegar B, Gehling JG, Jacobs DK (2015) Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia. Evol Dev 17:315–324

    Article  Google Scholar 

  • Grazhdankin D (2004) Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30:203–221

    Article  Google Scholar 

  • Grazhdankin D (2014) Patterns of evolution of the ediacaran soft-bodied biota. J Paleontol 88:269–283

    Article  Google Scholar 

  • Grazhdankin D, Seilacher A (2002) Underground Vendobionta from Namibia. Palaeontology 45:57–78

    Article  Google Scholar 

  • Grazhdankin D, Seilacher A (2005) A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geol Mag 142:571–582

    Article  Google Scholar 

  • Gürich G (1933) Die Kuibis-Fossilien der Nama-Formation von Suedwestafrica; nachtraege und Zusaetze. Palaeontol Z 15:137–154

    Article  Google Scholar 

  • Haines PW (2000) Problematic fossils in the late Neoproterozoic Wonoka Formation, South Australia. Precambrian Res 100:97–108

    Article  CAS  Google Scholar 

  • Harrington HJ, Moore RC (1956) Medusa of the hydroidea. In: Moore RC (ed) Treatise on invertebrate paleontology, Part F: Coelenterata. GSA and University of Kansas Press, Kansas, pp 77–80

    Google Scholar 

  • Hautmann M (2014) Diversification and diversity partitioning. Paleobiology 40:162–176

    Article  Google Scholar 

  • Hofmann HJ (1967) Precambrian fossils near Elliot Lake, Ontario. Science 156:500–504

    Article  CAS  Google Scholar 

  • Hofmann HJ (1971) Precambrian fossils, pseudofossils, and problemática in Canada. Geol Surv Can Bull 189:1–146

    Google Scholar 

  • Hofmann HJ (2005) Palaeoproterozoic dubiofossils from India revisited: Vindhyan triploblastic animal burrows or pseudopfossils. J Palaeontol Soc India, Golden Jubilee 50:113–120

    Google Scholar 

  • Hofmann HJ, Mountjoy EW (2010) Ediacaran body and trace fossils in Miette Group (Windermere Supergroup) near Salient Mountain, British Columbia, Canada. Can J Earth Sci 47:1305–1325

    Article  Google Scholar 

  • Hofmann R, Mángano MG, Elicki O, Shinaq R (2012) Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian of Jordan. J Paleontol 86:931–955

    Article  Google Scholar 

  • Högström ES, Jensen S, Palacios T, Ebbestad JOR (2013) New information on the Ediacaran-Cambrian transition in the Vestertana Group, Finmark, northern Norway, from trace fossils and organic-walled microfossils. Nor J Geol 93:95–106

    Google Scholar 

  • Ichaso AA, Dalrymple RW, Narbonne GM (2007) Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) Upper Conception and St John’s groups, west Conception Bay, Newfoundland. Can J Earth Sci 44:25–41

    Article  Google Scholar 

  • Ivantsov AY (2009) New reconstruction of Kimberella, problematic Vendian Metazoan. Paleontol J 43:601–611

    Article  Google Scholar 

  • Ivantsov AY (2011) Feeding traces of proarticulata—the Vendian Metazoa. Paleontol J 45:237–248

    Article  Google Scholar 

  • Ivantsov AY (2013) Trace fossils of Precambrian Metazoans “Vendobionta” and “Mollusks”. Strat Geol Correl 21:252–264

    Article  Google Scholar 

  • Ivantsov AY, Malakhovskaya YE (2002) Giant traces of Vendian animals. Dokl Earth Sci 385A:618–622

    CAS  Google Scholar 

  • Ivantsov AY, Narbonne GM, Trusler PW, Greentree C, Vickers-Rich P (in press) Elucidating Ernietta: New insights from exceptional specimens in the Ediacaran of Namibia. Lethaia

    Google Scholar 

  • Jenkins RJF (1995) The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Res 73:51–69

    Article  CAS  Google Scholar 

  • Jensen S (1997) Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata 42:1–111

    Google Scholar 

  • Jensen S (2003) The Proterozoic and earliest trace fossil record; Patterns, problems and perspectives. Int Comp Biol 43:219–228

    Article  Google Scholar 

  • Jensen S, Runnegar BN (2005) A complex trace fossil from the Spitskop Member (terminal Ediacaran–? Lower Cambrian) of southern Namibia. Geol Mag 142:561–569

    Article  Google Scholar 

  • Jensen S, Saylor BZ, Gehling JG, Germs GJB (2000) Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28:143–146

    Article  Google Scholar 

  • Jensen S, Gehling JG, Droser ML, Grant SWF (2002) A scratch circle origin for the medusoid fossil Kullingia. Lethaia 35:291–299

    Article  Google Scholar 

  • Jensen S, Droser ML, Gehling JG (2005) Trace fossil preservation and the early evolution of animals. Palaeogeogr Palaeoclimatol Palaeoecol 220:19–29

    Article  Google Scholar 

  • Jensen S, Droser ML, Gehling JG (2006). A critical look at the Ediacaran trace fossil record. In: Kaufman J, Xiao, S (eds) Neoproterozoic geobiology and paleobiology. Top Geobiol 27:115–157

    Google Scholar 

  • Kolesnikov AV, Marusin VV, Nagovitsin KE, Maslov AV, Grazhdankin DV (2015) Ediacaran biota in the aftermath of the Kotlinian Crisis: Asha Group of the South Urals. Precambrian Res 263:59–78

    Article  CAS  Google Scholar 

  • Jensen S, Palacios T, Martí Mus M (2007) A brief review of the fossil record of the Ediacaran-Cambrian transition in the área of Montes de Toledo-Guadalupe, Spain. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran Biota. Geol Soc Lond Spec Pub 286:223–235

    Google Scholar 

  • Joel LV, Droser ML, Gehling JG (2014) A new enigmatic, tubular organism from the Ediacara Member, Rawnsley Quartzite, South Australia. J Paleontol 88:253–262

    Article  Google Scholar 

  • Laflamme M, Xiao S, Kowalewski M (2009) Osmotrophy in modular Ediacara organisms. Proc Natl Acad Sci U S A 106:14438–14443

    Article  CAS  Google Scholar 

  • Laflamme M, Darroch SAF, Tweedt S, Peterson KJ, Erwin DH (2013) The end of the Ediacara biota: extinction, biotic replacement, or Cheshire cat? Gondwana Res 23:558–573

    Article  Google Scholar 

  • Landing E, Geyer G, Brasier MD, Bowring SA (2013) Cambrian evolutionary radiation: context, correlation, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth Sci Rev 123:133–172

    Article  CAS  Google Scholar 

  • Liu AG, Mcllroy D (2015) Horizontal surface traces from the Fermeuse Formation, Ferryland (Newfoundland, Canada), and their place within the late Ediacaran ichnological revolution. In: McIlroy D (ed) Proceedings of Ichnia 2012. Geol Assoc Can 9:141–156

    Google Scholar 

  • Liu AG, Mcllroy D, Brasier MD (2010) First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 38:123–126

    Article  Google Scholar 

  • Liu AG, Mcllroy D, Matthews JJ, Brasier MD (2014) Confirming the metazoan character of a 565 Ma trace-fossil assemblage from Mistaken Point, Newfoundland. Palaios 29:420–430

    Article  Google Scholar 

  • Liu AG, Kenchington C, Mitchell E (2015) Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota. Gondwana Res 27:1355–1380

    Article  Google Scholar 

  • McMenamin MAS (1998) The Garden of Ediacara: Discovering the first complex life. Columbia University Press, New York

    Google Scholar 

  • MacNaughton RB, Narbonne GM (1999) Evolution and ecology of Neoproterozoic-Lower Cambrian trace fossils, NW Canada. Palaios 14:97–115

    Article  Google Scholar 

  • MacNaughton RB, Narbonne GM, Dalrymple RW (2000) Neoproterozoic slope deposits, Mackenzie Mountains, northwestern Canada: implications for passive-margin development and Ediacaran faunal ecology. Can J Earth Sci 37:997–1020

    Article  Google Scholar 

  • Macdonald FA, Pruss SB, Strauss JV (2014) Trace fossils with spreiten from the late Ediacaran Nama Group, Namibia: complex feeding patterns five million years before the Precambrian–Cambrian boundary. J Paleo 88:299–308

    Google Scholar 

  • Mariotti G, Pruss SB, Ai X, Perron JT, Bosak T (2016) Microbial origin of early animal trace fossils? J Sed Res 86:287–293

    Google Scholar 

  • McMenamin MAS (1996) Ediacaran biota from Sonora, Mexico. Proc Natl Acad Sci U S A 93:4990–4993

    Article  CAS  Google Scholar 

  • Mángano MG (2011) Trace-fossil assemblages in a Burgess Shale-type deposit from the Stephen Formation at Stanley Glacier, Canadian Rocky Mountains: unraveling ecologic and evolutionary controls. In: Johnston PA, Johnston KJ (eds) Proceedings of the international conference on the Cambrian explosion. Palaeont Canad 31:89–107

    Google Scholar 

  • Mángano MG, Buatois LA (2007) Trace fossils in evolutionary paleoecology. In: Miller WIII (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 391–409

    Chapter  Google Scholar 

  • Mángano MG, Buatois LA (2014) Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proc R Soc B 281:20140038

    Article  Google Scholar 

  • Mángano MG, Buatois LA, West RR, Maples CG (2002) Ichnology of an equatorial tidal flat: the Stull Shale Member at Waverly, eastern Kansas. Kansas Geol Surv Bull 245:1–130

    Google Scholar 

  • Mángano MG, Bromley RG, Harper DAT, Nielsen AT, Smith MP, Vinther J (2012) Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): opening a new window into early Phanerozoic benthic ecology. Geology 40:519–522

    Article  Google Scholar 

  • Mángano MG, Buatois LA, Hofmann R, Elicki O, Shinaq R (2013) Exploring the aftermath of the Cambrian Explosion: the evolutionary significance of marginal- to shallow-marine ichnofaunas of Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 374:1–15

    Article  Google Scholar 

  • Mariotti G, Pruss SB, Ai X, Perron JT, Bosak T (2016) Microbial Origin of Early Animal Trace Fossils?. J Sed Res 86:287–293

    Google Scholar 

  • Matz MV, Frank TM, Marshall NJ, Widder EA, Johnsen S (2008) Giant deep-sea Protist produces bilaterian-like traces. Curr Biol 18:1849–1854

    Article  CAS  Google Scholar 

  • McIlroy D, Brasier MD, Lang AS (2009) Smothering of microbial mats by macrobiota: implications for the Ediacara biota. J Geol Soc 166:1117–1121

    Article  Google Scholar 

  • Menon LR, McIlroy D, Brasier MD (2013) Evidence for Cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella. Geology 41:895–898

    Article  Google Scholar 

  • Meyer M, Schiffbauer JD, Xiao S, Cai Y, Hua H (2012) Taphonomy of the upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes. Palaios 27:354–372

    Article  Google Scholar 

  • Meyer M, Xiao S, Gill BC, Schiffbauer JD, Chen Z, Zhou C, Yuan X (2014a) Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeogr Palaeoclimatol Palaeoecol 396:62–74

    Article  Google Scholar 

  • Meyer M, Elliott D, Wood AD, Polys NF, Colbert M, Maisano JA, Vickers-Rich P, Hall M, Hoffmann KH, Schneider G, Xiao S (2014b) Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res 249:79–87

    Article  CAS  Google Scholar 

  • Mikuláš R, Fatka O, Szabad M (2012) Paleoecologic implications of ichnofossils associated with slightly skeletonized body fossils, middle Cambrian of the Barrandian Area, Czech Republic. Ichnos 19:199–210

    Article  Google Scholar 

  • Miller MF, Smail SE (1997) A semiquantitative method for evaluating bioturbation on bedding planes. Palaios 12:391–396

    Article  Google Scholar 

  • Miller W III (1998) Complex marine trace fossils. Lethaia 31:29–32

    Article  Google Scholar 

  • Miller W III (2002) Complex trace fossils as extended organisms: a proposal. N Jahrb Geol Palaeontol Monatsh 3:147–158

    Google Scholar 

  • Miller W III (2003) Paleobiology of complex trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 192:3–14

    Article  Google Scholar 

  • Misra SB (1969) Late Precambrian (?) fossils from southeastern Newfoundland. Geol Soc Am Bull 80:2133–2140

    Article  Google Scholar 

  • Narbonne GM (2005) The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Plan Sci 33:421–442

    Article  CAS  Google Scholar 

  • Narbonne GM, Aitken JD (1990) Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology 33:945–980

    Google Scholar 

  • Narbonne GM, Gehling JG (2003) Life after snowball: the oldest complex Ediacaran fossils. Geology 31:27–30

    Article  Google Scholar 

  • Narbonne GM, Hofmann HJ (1987) Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30:647–676

    Google Scholar 

  • Narbonne GM, Saylor BZ, Grotzinger JP (1997) The youngest Ediacaran fossils from southern Africa. J Paleontol 71:953–967

    Article  CAS  Google Scholar 

  • Narbonne GM, Myrow PM, Anderson MM (1987) A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Can J Earth Sci 24:1277–1293

    Article  Google Scholar 

  • Narbonne GM, Laflamme M, Trusler PW, Dalrymple RW, Greentree C (2014) Deepwater Ediacaran fossils from northwestern Canada: taphonomy, ecology, and evolution. J Paleontol 88:207–223

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (1996) Microbially induced sedimentary structures-examples from modem sediments of siliciclastic tidal flats. Zbl Geol Palfiont Tell I 1:307–316

    Google Scholar 

  • Olivero D (2003) Early Jurassic to Late Cretaceous evolution of Zoophycos in the French Subalpine Basin (southeastern France). Palaeogeogr Palaeoclimatol Palaeoecol 192:59–78

    Article  Google Scholar 

  • Pacześna J (1985) Ichnorodzaj Paleodictyon Meneghini z dolnego kambru Zbilutki (Góry Świętokrzyskie). Kwartalnik Geol 29:589–596

    Google Scholar 

  • Pacześna J (1986) Upper Vendian and Lower Cambrian Ichnocoenoses of the Lublin Region. Biul Inst Geol 355:32–47

    Google Scholar 

  • Pacześna J (1996) The Vendian and Cambrian ichnocoenoses from the Polish part of the East-European Platform. Prace Państ Inst Geol CL11:1–77

    Google Scholar 

  • Pecoits E, Konhauser KO, Aubet NR, Heaman LM, Veroslavsky G, Stern RA, Gingras MK (2012) Bilaterian burrows and grazing behavior at >585 million years ago. Science 336:1693–1696

    Article  CAS  Google Scholar 

  • Pemberton SG, Frey RW (1982) Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. J Paleontol 56:843–871

    Google Scholar 

  • Pemberton SG, Frey RW, Bromley RG (1988) The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Can J Earth Sci 25:886–892

    Article  Google Scholar 

  • Peterson KJ, Lyons JB, Nowak KS, Takacs CM, Wargo MJ, Mcpeek MA (2004) Estimating metazoan divergence times with a molecular clock. Proc Natl Acad Sci U S A 101:6536–6541

    Article  CAS  Google Scholar 

  • Peterson KJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos Trans R Soc B Biol Sci 363:1435–1443

    Article  Google Scholar 

  • Pisani D, Liu AG (2015) Animal evolution: only rocks can set the clock. Curr Biol 25:R1079–R1081

    Article  CAS  Google Scholar 

  • Plotnick RE, Dornbos SQ, Chen J (2010) Information landscapes and sensory ecology of the Cambrian Radiation. Paleobiology 36:303–317

    Article  Google Scholar 

  • Porada H, Bouougri E (2008) Neoproterozoic trace fossils vs. microbial mat structures: examples from the Tandilia Belt of Argentina. Gondwana Res 13:480–487

    Article  Google Scholar 

  • Rasmussen B, Bose PK, Sarkar S, Banerjee S, Fletcher IR, McNaughton NJ (2002a) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: possible implications for early evolution of animals. Geology 30:103–106

    Article  CAS  Google Scholar 

  • Rasmussen B, Bengtson S, Fletcher IR, McNaughton N (2002b) Discoidal impressions and trace-like fossils more than 1200 million years old. Science 296:1112–1115

    Article  CAS  Google Scholar 

  • Ray JS, Martin MW, Veizer J, Bowring SA (2002) U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology 30:131–134

    Article  CAS  Google Scholar 

  • Reineck H-E (1963) Sedimentgefüge im Bereich der südliche Nordsee. Abh Senck Nat Gesell 505:1–138

    Google Scholar 

  • Reineck H-E (1967) Layered sediments of tidal flat beaches, and shelf bottoms of the North Sea. In: Lauff GH (ed) Estuaries. Am Assoc Adv Sci Spec Pub 83:191–206

    Google Scholar 

  • Retallack GJ (2007) Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa 31:215–240

    Article  Google Scholar 

  • Retallack GJ (2010) First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland: Comment. Geology 38:e223

    Google Scholar 

  • Retallack G (2012) Were the Ediacaran siliciclastics of South Australia coastal or deep marine? Sedimentology 59:1208–1236

    Article  CAS  Google Scholar 

  • Retallack GJ (2013a) Ediacaran life on land. Nature 493:89–92

    Article  CAS  Google Scholar 

  • Retallack GJ (2013b) Comment on “Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors” by Chen et al. Precambrian Res 231:383–385

    Article  CAS  Google Scholar 

  • Retallack GJ (2013c) Reply to the discussion by Callow et al. on “Were the Ediacaran siliciclastics of South Australia coastal or deep marine?”. Sedimentology 59:1208–1236

    Article  CAS  Google Scholar 

  • Retallack GJ (2013d) Ediacaran characters. Evol Dev 15:387–388

    Article  Google Scholar 

  • Rogov V, Marusin V, Bykova N, Goy Y, Nagovitsin K, Kochnev B, Karlova G, Grazhdankin D (2012) The oldest evidence of bioturbation on Earth. Geology 40:395–398

    Article  CAS  Google Scholar 

  • Runnegar B (1992a) Proterozoic metazoan trace fossils. In: Klein C, Schopf JW (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, pp 1009–1015

    Google Scholar 

  • Runnegar B (1992b) Oxygen and the early evolution of the Metazoa. In: Bryant C (ed) Metazoan life without oxygen. Chapman & Hall, London, pp 65–87

    Google Scholar 

  • Sappenfield A, Droser ML, Gehling JG (2011) Problematica, trace fossils, and tubes within the Ediacara Member (South Australia): redefining the Ediacaran trace fossil record one tube at a time. J Paleontol 85:256–265

    Article  Google Scholar 

  • Schmitz MD (2012) Radiometric ages used in GTS2012. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale, vol 2. Elsevier, Amsterdam, pp 1045–1082

    Chapter  Google Scholar 

  • Schoener TW (1987) A brief history of optimal foraging ecology. In: Kamil AC, Krebs JR, Pulliam HR (eds) Foraging behavior. Plenum Press, New York, pp 5–68

    Chapter  Google Scholar 

  • Seilacher A (1956) Der Beginn des Kambriums als biologische Wende. N Jahrb Geol Palaeontol Abh 103:155–180

    Google Scholar 

  • Seilacher A (1984) Late Precambrian and Early Cambrian Metazoa: Preservational or real extinctions? In: Holland HD, Trendall AF (eds), Springer-Verlag, Berlin, pp 159–168

    Google Scholar 

  • Seilacher A (1992) Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution. J Geol Soc Lond 149:607–613

    Google Scholar 

  • Seilacher A (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229–239

    Article  Google Scholar 

  • Seilacher A (1990) Paleozoic trace fossils. In: Said R (ed) The geology of Egypt. A.A. Balkema, Rotterdam, Brookfield, pp 649–722

    Google Scholar 

  • Seilacher A (1997) Fossil Art. The Royal Tyrrell Museum of Paleontology, Drumheller

    Google Scholar 

  • Seilacher A (1999) Biomat-related lifestyles in the Precambrian. Palaios 14:86–93

    Article  Google Scholar 

  • Seilacher A (2007) Trace fossil analysis. Springer, Heidelberg

    Google Scholar 

  • Seilacher A (2008) Fossil art. An exhibition of the Geologisches Institut, Tubingen Unversity, Germany. Wacker Chernie AG

    Google Scholar 

  • Seilacher A, Gishlick AD (2014) Morphodynamics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Seilacher A, Pflüger F (1994) From biomats to benthic agriculture: a biohistoric revolution. In: Krumbein WE, Peterson DM, Stal LJ (eds) Biostabilization of sediments. Bibliotheks und Informationssystem der Carl von Ossietzky Universität Odenburg, pp 97–105

    Google Scholar 

  • Seilacher A, Bose PK, Pflüger F (1998) Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282:80–83

    Article  CAS  Google Scholar 

  • Seilacher A, Meschede M, Bolton EW, Luginsland H (2000) Precambrian “fossil” Vermiforma is a tectograph. Geology 28:235–238

    Article  Google Scholar 

  • Seilacher A, Grazhdankin D, Legouta A (2003) Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol Res 7:43–54

    Article  Google Scholar 

  • Seilacher A, Buatois LA, Mángano MG (2005) Trace fossils in the Ediacaran-Cambrian transition: behavioural diversification, ecological turnover and environmental shift. Palaeogeogr Palaeoclimatol Palaeoecol 227:323–356

    Article  Google Scholar 

  • Shen B, Xiao S, Dong L, Zhou C, Liu J (2007) Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: implications for their evolutionary roots and biostratigraphic significance. J Paleontol 81:1396–1411

    Article  Google Scholar 

  • Sokolov BS (1997) Ocherki stanovleniya Venda. KMK Scientific Press, Moscow

    Google Scholar 

  • Sour-Tovar F, Hagadorn JW, Huitrón-Rubio T (2007) Ediacaran and Cambrian index fossils from Sonora, Mexico. Palaeontology 50:169–175

    Article  Google Scholar 

  • Sperling EA, Vinther JA (2010) A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev 12:201–209

    Article  Google Scholar 

  • Sprigg RC (1947) Early Cambrian (?) jellyfishes from the Flinders ranges, South Australia. Trans R Soc S Aust 71:212–224

    Google Scholar 

  • Sprigg RC (1949) Early Cambrian “jellyfishes” of Ediacara, South Australia and Mount John, Kimberley District, Western Australia. Trans R Soc S Aust 73:72–99

    Google Scholar 

  • Tangri SK, Bhargava ON, Pande AC (2003) Late Precambrian–Early Cambrian trace fossils from Tethyan Himalaya, Bhutan and their bearing on the Precambrian-Cambrian boundary. J Geol Soc India 62:708–716

    Google Scholar 

  • Tarhan LG, Droser ML, Gehling JG (2010) Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios 25:823–830

    Article  Google Scholar 

  • Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc Lond 150:141–148

    Article  Google Scholar 

  • Vannier J, Calandra I, Gaillard C, Zylinska A (2010) Priapulid worms: pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology 38:711–714

    Article  Google Scholar 

  • Verce M, Netto RG (2015) Alleged earliest bilaterian trace fossils in the so called Tacuarí Formation (“Ediacaran”, Cerro Largo, Uruguay) revisited: arthropod ichnocoenoses indicate a Pennsylvanian–earliest Asselian age. In: Third Latin American symposium on ichnology, Abstract, p 76

    Google Scholar 

  • Vickers-Rich P, Ivantsov AY, Trusler PW, Narbonne GM, Hall M, Wilson SA, Greentree C, Fedonkin M, Elliott DA, Hoffmann KH, Schneider GIC (2013) Reconstructing Rangea: new discoveries from the Ediacaran of southern Namibia. J Paleontol 87:1–15

    Article  Google Scholar 

  • Vidal G, Jensen S, Palacios T (1994) Neoproterozoic (Vendian) ichnofossils from Lower Alcudian strata in central Spain. Geol Mag 131:169–179

    Article  Google Scholar 

  • Walter MR, Elphinstone R, Heys GR (1989) Proterozoic and Early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa 13:209–256

    Article  Google Scholar 

  • Webby BD (1970) Late Precambrian trace fossils from New South Wales. Lethaia 3:79–109

    Article  Google Scholar 

  • Webby BD (1984) Precambrian-Cambrian trace fossils from western New South Wales. Aust J Earth Sci 31:427–427

    Article  Google Scholar 

  • Weber B, Steiner M, Zhu MY (2007) Precambrian Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeogr Palaeoclimatol Palaeoecol 254:328–349

    Article  Google Scholar 

  • Wood DA, Dalrymple RW, Narbonne GM, Gehling JG, Clapham ME (2003) Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Can J Earth Sci 40:1375–1391

    Article  Google Scholar 

  • Wray GA (2015) Molecular clocks and the early evolution of metazoan nervous systems. Philos Trans B 370:20150046

    Article  Google Scholar 

  • Xiao S, Droser M, Gehling JG, Hughes IV, Wan B, Chen Z, Yuan X (2013) Affirming life aquatic for the Ediacaran biota in China and Australia. Geology 41:1095–1098

    Article  Google Scholar 

  • Young FG (1972) Early Cambrian and older trace fossils from the Southern Cordillera of Canada. Can J Earth Sci 9:1–17

    Article  Google Scholar 

  • Zakrevskaya M (2014) Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeogr Palaeoclimatol Palaeoecol 410:27–38

    Article  Google Scholar 

  • Zhang L (1986) A discovery and preliminary study of the late stage of late Gaojiashan biota from Sinian in Ningqiang county, Shaanxi. Bull Xian Inst Geol Miner Resour 13:67–88

    Google Scholar 

  • Zhuravlev AY, Gámez-Vintaned JA, Ivantsov AY (2009) First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geol Mag 146:775–780

    Article  Google Scholar 

Download references

Acknowledgments

We are happy to have been able to interact with Dolf Seilacher, who was a huge influence for us. Discussions with Guy Narbonne have always been both fruitful and enjoyable. Sören Jensen has always been there for valuable exchanges on Ediacaran ichnofaunas. Sören Jensen is also thanked for providing the photographs for Figs. 2.14b, c and 2.15a, b. Jakob Vinther generously provided all photographs included in Fig. 2.12 . A large number of colleagues guided us in Ediacaran outcrops all over the world, including John Almond (South Africa, Namibia), Jim Gehling (Australia), Gerard Germs (Namibia), Sören Jensen (Spain), Alex Liu (Newfoundland), and Guy Narbonne (Australia, Newfoundland). Peter Crimes gave access to his trace fossil collection and inspired us to tackle some of the issues discussed in this chapter. Richard Jenkins and Jim Gehling showed us material from Australia. Ludvig Loewemark and Jorge Genise provided valuable comments on the controversial Nama structures. This chapter has been benefitted from careful reviews by Sören Jensen and Guy Narbonne. Financial support for this study was provided by Natural Sciences and Engineering Research Council (NSERC) Discovery Grants Discovery Grant 311726-05/08/13 awarded to Buatois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Buatois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buatois, L.A., Mángano, M.G. (2016). Ediacaran Ecosystems and the Dawn of Animals. In: Mángano, M., Buatois, L. (eds) The Trace-Fossil Record of Major Evolutionary Events. Topics in Geobiology, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9600-2_2

Download citation

Publish with us

Policies and ethics