Skip to main content

Contaminants in Marine Sedimentary Deposits from Coal Fly Ash During the Latest Permian Extinction

  • Chapter
  • First Online:
Book cover Environmental Contaminants

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 18))

Abstract

The Latest Permian Extinction (LPE) event, the greatest mass extinction in Earth history, was marked by major explosive volcanic eruptions through thick layers of coal and carbonaceous deposits at the time. This resulted in significant dispersion of volcanic-derived ash and other particulate and gaseous hazardous substances, which may have caused extensive contamination of the global marine ecosystem.

A continuous geological sedimentary record from the Canadian High Arctic revealed evidence of unprecedented mercury loading that may have contributed to the extinction. Mercury loading is attributed to combined effects of volcanic emissions in association with volcanic combustion of surface and subsurface coal and carbonaceous deposits.

Mercury influx exceeded the scavenging capacity of organic matter (OM) in the Late Permian ocean, leading to major disruption of mercury drawdown processes mediated by organic carbon. This resulted in buildup of dissolved mercury to maximum levels at the LPE boundary. The transition of the Latest Permian ocean to euxinic conditions allowed sulphide scavenging of mercury from ocean water, beginning a self-mitigation process that led to gradual recovery from toxic marine conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andren AW, Harriss RC (1975) Observations on the association between mercury and organic matter dissolved in natural waters. Geochimica Cosmochim Acta 39:1253–1258

    Article  CAS  Google Scholar 

  • Baines PG, Jones MT, Sparks RSJ (2008) The variation of large-magnitude volcanic ash cloud formation with source latitude. J Geophys Res 113:D21204. doi:10.1029/2007jd009568

    Article  Google Scholar 

  • Beauchamp B, Henderson CM, Grasby SE, Gates LT, Beatty TW, Utting J, James NP (2009) Late Permian sedimentation in the Sverdrup Basin, Canadian Arctic: the Lindström and Black Stripe formations. Can Soc Petroleum Geol Bull 57:167–191

    Article  Google Scholar 

  • Beerling DJ, Harfoot M, Lomax B, Pyle JA (2007) The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil Trans R Soc Lond 365:1843–1866

    Article  CAS  Google Scholar 

  • Camargo JA (2002) Contribution of Spanish-American silver mines (1570–1820) to the present high mercury concentrations in the global environment: a review. Chemosphere 48:51–57

    Article  CAS  Google Scholar 

  • Campbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V (1992) Synchronism of the Siberian Traps and the Permian-Triassic Boundary. Science 258:1760–1763

    Article  CAS  Google Scholar 

  • Cranston RE, Buckley DE (1972) Mercury pathways in a river and estuary. Environ Sci Technol 6:274–278

    Article  CAS  Google Scholar 

  • Embry AF, Beauchamp B (2008) Sverdrup basin. In: Miall AD (ed) In the Sedimentary Basins of Unites States and Canada. Elsevier, 451–472

    Google Scholar 

  • Erwin DH (2006) Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, New Jersey

    Google Scholar 

  • Gehrke GE, Blum JD, Meyers PA (2009) The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochimica Cosmochim Acta 73:1651–1665

    Article  CAS  Google Scholar 

  • Grasby SE, Beauchamp B (2008) Intrabasin variability of the carbon-isotope record across the Permian-Triassic transition, Sverdrup Basin, Arctic Canada. Chem Geol 253:141–150

    Article  CAS  Google Scholar 

  • Grasby SE, Beauchamp B (2009) Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada. Chem Geol 264:232–246

    Article  CAS  Google Scholar 

  • Grasby SE, Sanei H, Beauchamp B (2011) Catastrophic dispersion of coal fly-ash into oceans during the latest Permian extinction. Nat Geosci 4:104–107

    Article  CAS  Google Scholar 

  • Grasby SE, Sanei H, Beauchamp B, Chen Z (2013) Mercury deposition through the Permo–Triassic Biotic Crisis. Geol. 351:209–216

    Google Scholar 

  • Kidder DL, Worsley TR (2010) Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 295:162–191

    Article  Google Scholar 

  • Kniess J, Grasby SE, Beauchamp B, Schubert C (2013) Water mass denitrification during the latest Permian extinction in the Sverdrup Basin, Arctic Canada. Geology 41:167–170

    Article  Google Scholar 

  • Korte C, Kozur HW (2010) Carbon isotope stratigraphy across the Permian -Triassic boundary: a review. J Asian Earth Sci 39:215–235

    Google Scholar 

  • Korte C, Pande P, Kalia P, Kozur HW, Joachimski MM, Oberhänsli H (2010) Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci 37:293–311

    Article  Google Scholar 

  • Lindberg SE, Andrenson AW, Harrisson RC (1975) Geochemistry of mercury in the estuarine environment. In: Cronin EL (ed) Estuarine research. Chemistry, biology and the estuarine system, vol 1. Academic Press, New York

    Google Scholar 

  • Outridge PM, Sanei H, Stern GA, Hamilton PB, Goodarzi F (2007) Evidence for control of mercury accumulation in sediments by variations of aquatic primary productivity in Canadian High Arctic lakes. Environ Sci Technol 41:5259–5265

    Article  CAS  Google Scholar 

  • Outridge PM, Rausch N, Percival JB, Shotyk W, McNeely R (2011) Comparison of mercury and zinc profiles in peat and lake sediment archives with historical changes in emissions from the Flin Flon metal smelter, Manitoba, Canada. Sci Total Environ 3:548–563

    Article  Google Scholar 

  • Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chem Phys Discuss 10:4719–4752

    Article  Google Scholar 

  • Proemse BC, Grasby SE, Wieser ME, Mayer B, Beauchamp B (2013) Molybdenum isotope evidence for oxic marine conditions during the Latest Permian Extinction. Geology 41:967–970

    Google Scholar 

  • Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115–5124

    Article  CAS  Google Scholar 

  • Rampino MR, Stothers RB (1988) Flood Basalt Volcanism during the past 250 million years. Science 241:663–668

    Article  CAS  Google Scholar 

  • Reichow MK, Pringle MS, Al’Mukhamedov AI, Allen MB, Andreichev VL, Buslov MM, Davies CE, Fedoseev GS, Fitton JG, Inger S, Medvedev AYa, Mitchell C, Puchkov VN, Safonova IYu, Scott RA, Saunders AD (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet Sci Lett 277:9–20

    Article  CAS  Google Scholar 

  • Retallack GJ, Jahren AH (2008) Methane release from igneous intrusion of coal during Late Permian extinction events. J Geol 116:1–20

    Article  CAS  Google Scholar 

  • Sahney S, Benton MJ (2008) Recovery from the most profound mass extinction of all time (PDF). Proc R Soc: Biol 275(1636):759–765. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148

    Google Scholar 

  • Sanei H, Goodarzi F, Outridge PM (2010) Spatial distribution of mercury and other trace elements in recent lake sediments from central Alberta, Canada: an assessment of the regional impact of coal-fired power plants. Int J Coal Geol 82:105–115

    Article  CAS  Google Scholar 

  • Sanei H, Grasby SE, Beauchamp B (2012) Latest Permian mercury anomalies. Geology 40:63–66

    Article  CAS  Google Scholar 

  • Saunders AD, Reichow MK (2009) The Siberian Traps and the End-Permian mass extinction: a critical review. Chin Sci Bull 54:20–37

    Article  CAS  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury–an overview. Atmospheric Environ 32:809–822

    Article  CAS  Google Scholar 

  • Shen S, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao C, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen Y, Wang X, Wang W, Mu L, Li W, Tang Y, Liu X, Liu L, Zeng Y, Jiang Y, Jin Y (2011) Calibrating the end-permian mass extinction. Science 334(6061):1367–1372

    Article  CAS  Google Scholar 

  • Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500

    Article  CAS  Google Scholar 

  • Tewalt ST, Belkin HE, SanFilipo JR, Merrill MD, Palmer CA, Warwick PD, Karlsen AW, Finkelman RB, Park AJ (2010) Chemical analyses in the World Coal Quality Inventory. Open-File Report 2010–1196, in U.S. Department of the Interior, U.S.G.S., ed., Volume 1

    Google Scholar 

  • Thordarson T, Rampino M, Keszthelyi LP, Self S (2009) In: Chapman MG, Keszthelyi LP (eds) Preservation of random megascale events on Mars and Earth: influence on geologic history. Geological Society of America Special Paper 453, p 37–53

    Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth-Science Rev 53:1–33

    Article  CAS  Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian/Triassic mass extinction; facies evidence from northern Italy and the Western United States. Palaeogeogr Palaeoclimatol Palaeoecol 93:21–46

    Article  Google Scholar 

  • Yudovich YE, Ketris MP (2005) Mercury in coal: a review part 2. Coal use and environmental problems. Int J Coal Geol 62(3):135–165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Sanei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sanei, H., Grasby, S., Beauchamp, B. (2015). Contaminants in Marine Sedimentary Deposits from Coal Fly Ash During the Latest Permian Extinction. In: Blais, J., Rosen, M., Smol, J. (eds) Environmental Contaminants. Developments in Paleoenvironmental Research, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9541-8_5

Download citation

Publish with us

Policies and ethics