Skip to main content

Binding Modes and Interaction Mechanism Between Different Base Pairs and Methylene Blue Trihydrate: A Quantum Mechanics Study

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

Different quantum mechanic methods have been evaluated for the calculation of binding modes and interactions between intercalators with different DNA base pairs by comparing with the results of MP2, which is very expensive, indicating that WB97XD method under 6-311+G* basis set is able to efficiently reproduce MP2 results. We discovered that the methylene blue trihydrate intercalated into the DNA base pairs, and DNA intercalation increased the distance between DNA base pairs, depending on the types of DNA bases. According to the binding energy results, it was found that the intercalation of methylene blue trihydrate into AA-TT base pair was more favorable in the orientation of nitrogen than other directions and intercalation, and the electric charge was transferred from methylene blue trihydrate to the AA-TT base pair. The analysis of change in the charge density shows that changes often take place in the heavy atom in the middle of the system which the charge density changes most remarkable.

Huiying Chu, Jinguang Wang and Peijun Xu have been contributed equally to this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li L, Chen Q, Wei DQ (2012) Prediction and functional analysis of single nucleotide polymorphisms. Curr Drug Metab 13:1012–1023

    Article  CAS  PubMed  Google Scholar 

  2. Wei DQ (2012) New drug design based on multi-targets and system biology approach in light of real time DNA sequencing technologies. Curr Top Med Chem 12:1309

    Article  CAS  PubMed  Google Scholar 

  3. Xiong Y, Liu JA, Wei DQ (2011) An accurate feature-based method for identifying DNA-binding residues on protein surfaces. Proteins 79(2):509–517

    Article  CAS  PubMed  Google Scholar 

  4. Řeha D, Kabeláč M, Ryjáček F, Šponer J, Šponer JE, Elstner M et al (2002) Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4’, 6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study. J Am Chem Soc 124:3366–3376

    Article  PubMed  Google Scholar 

  5. Langner KM, Kedzierski P, Sokalski WA, Leszczynski J (2006) Physical nature of ethidium and proflavine interactions with nucleic acid physical nature of ethidium and proflavine interactions with nucleic acid. J Phys Chem B 110:9720–9727

    Article  CAS  PubMed  Google Scholar 

  6. Graves DE, Velea LM (2000) Intercalative binding of small molecules to nucleic acids. Curr Org Chem 9:915–929

    Article  Google Scholar 

  7. Chaires JB (1997) Energetics of drug-DNA interactions. Biopolymers 44(3):201–215

    Article  CAS  PubMed  Google Scholar 

  8. Kubar T, Hanus M, Ryjacek F, Hobza P (2005) Binding of cationic and neutral phenanthridine intercalators to a DNA oligomer is controlled by dispersion energy: quantum chemical calculations and molecular mechanics simulations. Chem-A Eur J 12(1):280–290

    Article  Google Scholar 

  9. Waring MJ (1981) DNA modification and cancer. Annu Rev Biochem 50:159–192

    Article  CAS  PubMed  Google Scholar 

  10. Starcevic K, Karminski-Zamola G, Piantanida I, Zinic M, Suman L, Kralji M (2005) Photoinduced switch of a DNA/RNA inactive molecule into a classical intercalator. J Am Chem Soc 127(4):1074–1075

    Article  CAS  PubMed  Google Scholar 

  11. Fantacci S, De Angelis F, Sgamellotti A, Marrone A, Re N (2005) Photophysical properties of [Ru(phen)2(dppz)]2+ intercalated into DNA: An integrated Car-Parrinello and TDDFT Study. J Am Chem Soc 127(41):14144–14145

    Article  CAS  PubMed  Google Scholar 

  12. Auerbach SS, Bristol DW, Peckham JC, Travlos GS, Hébert CD, Chhabra RS (2010) Toxicity and carcinogenicity studies of methylene blue trihydrate in F344 N rats and B6C3F1 mice. Food Chem Toxicol l48(1):169–177

    Google Scholar 

  13. Hejtmancik MR, Ryan MJ, Toft JD, Persing RL, Kurtz PJ, Chhabra RS (2002) Hematological effects in F344 rats and B6C3F1 mice during the 13-week gavage toxicity study of methylene blue trihydrate. Toxicol Sci 65(1):126–134

    Article  CAS  PubMed  Google Scholar 

  14. Bondarev DA, Skawinski WJ, Venanzi CA (2000) Nature of intercalator amiloride-nucelobase stacking. An empirical potential and ab initio electron correlation study. J Phys Chem B 104:815–822

    Article  CAS  Google Scholar 

  15. Šponer J, Gabb HA, Leszczynski J, Hobza P (1997) Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. Biophys J 73(1):76–87

    Article  PubMed Central  PubMed  Google Scholar 

  16. Li S, Cooper VR, Thonhauser T, Lundqvist BI, Langreth DC (2009) Stacking interactions and DNA intercalation. J Phys Chem B 113:11166–11172

    Article  CAS  PubMed  Google Scholar 

  17. Elcock AH, Rodger A, Richards WG (1996) Theoretical studies of the intercalation of 9-hydroxyellipticine in DNA. Biopolymers 39:309–326

    Article  CAS  PubMed  Google Scholar 

  18. Cooper VR, Thonhauser T, Puzder A, Schröder E, Lundqvist BI, Langreth DC (2008) Stacking interactions and the twist of DNA. J Am Chem Soc 130:1304–1308

    Article  CAS  PubMed  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR et al (2003) Gaussian 03 Inc., Wallingford CT

    Google Scholar 

  20. Dewar MJS, Holder AJ (1990) AM1 parameters for aluminum. Organometallics 9:508–511

    Article  CAS  Google Scholar 

  21. Stewart JJP (2007) Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theor Comput 4:297–306

    Article  CAS  Google Scholar 

  23. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  24. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  25. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433

    Article  CAS  PubMed  Google Scholar 

  26. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:1–18

    Google Scholar 

  28. McWeeny R, Dierksen G (1968) Self-consistent perturbation theory. 2. Extension to open shells. J Chem Phys 49:4852–4856

    Article  CAS  Google Scholar 

  29. Head-Gordon M, Maurice D, Oumi M (1995) A perturbative correction to restricted open-shell configuration-interaction with single substitutions for excited-states of radicals. Chem Phys Lett 246:114–121

    Article  CAS  Google Scholar 

  30. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, P. et al. (2015). Binding Modes and Interaction Mechanism Between Different Base Pairs and Methylene Blue Trihydrate: A Quantum Mechanics Study. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_12

Download citation

Publish with us

Policies and ethics