Skip to main content

Systematic and Evolution of Microorganisms: General Concepts

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

The diversity of metabolic activities is a characteristic of the microbial world. This enormous diversity needs to be structured in order to be understood, and as a result, taxonomy and systematics are constantly changing since the beginning of the history of microbiology and particularly today with the introduction in the last 20 years of phylogeny as the core of systematics. The history of concepts in systematics and classification is presented. Classification is the science of ordering microorganism groups (taxa) based on their interrelationships. Taxonomy is the discipline that defines the principles and laws of classification. Nomenclature is the science of defining and naming the taxonomic categories (species, genera, families, orders, classes, divisions, phyla, kingdoms, domains), according to their hierarchical rank. In this way, different schools of classification and bacterial systematics were developed in the twentieth century. Today, there is an international consensus based on the classification of the Bergey’s Manual revisited with the concepts of phylogeny. Through this classification, the concept of the prokaryotic world organization has evolved. From the idea of a kingdom of prokaryotes, the concept of three domains in the organization of life supported by phylogenetic trees is fully accepted today. Among these three domains, two are prokaryotic: Bacteria and Archaea. In this chapter, the role of horizontal gene transfers in the evolution of life is discussed. The origin of eukaryotes with the primary, secondary, and tertiary endosymbioses is also presented. This allows to improve or to transform the concept of the tree of life from phylogeny to full genome study.

Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Viruses are functionally inactive when they are outside their host. However, a virus, as parasite of the archaea Acidianus convivator, was discovered in hydrothermal vents of Pozzuoli (Italy) and was able to generate outside of the host, a double tail protein (800 amino acids). It was named ATV (Acidianus two-tailed virus) (Häring et al. 2005).

  2. 2.

    http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View.ShowTOC&rid=icnb.TOC&depth=2)

  3. 3.

    For prokaryotes, including Cyanobacteria and Planctomycetes, only the “International Code of Bacterial Nomenclature” should have the authority. Discussions are underway to harmonize the nomenclature of Cyanobacteria and Planctomycetes with the “International Code of Botanical Nomenclature.”

  4. 4.

    The name of Linnaeus is often translated as “Linné.” This goes back to the tradition that was, until the eighteenth century, to change its name according to the languages and countries. This is also the choice of the Royal Swedish Museum of Natural History (www2.nrm.se/fbo/hist/linnaeus/linnaeus.html.se) website that talks about Carl von Linné, which is the French form he chose himself when he was knighted in 1762 by the King of Sweden. However, the name that appears on the cover of the book Species Plantarum, chosen as the starting point of the nomenclature, is “Caroli Linnaei” the declined Latin form of Carolus Linnaeus.

  5. 5.

    The confusion between Turbinaria “plants” and “animals” is all the more disturbing given that they can coexist in the same coral reef ecosystem and even live one on the other.

  6. 6.

    For example, Paranema (Dujardin 1841) is a valid name for a colorless Euglena species according to zoologists. For botanists, the valid name of the same species is Pseudoparanema (Christen 1962) as Paranema (Don 1825) is a fern and has the priority.

  7. 7.

    Chlorarachniobionta are amoebae equipped with chloroplasts.

  8. 8.

    The use of steranes, as biomarkers of eukaryotes, is disputed (cf. Chap. 4).

  9. 9.

    In this chapter, we use the term symbiosis in its original and modern sense as relations between two taxonomically different organisms, and not in the sense of coexistence with mutual benefits, a meaning to which this has gradually derivated and continues to be accepted by current authors (cf. Chap. 10). Symbiosis therefore includes exploitation (predation, parasitism), competition, commensalism, amensalism, mutualism (mutually beneficial interaction), and helotism (servitude).

  10. 10.

    The abundance of these chloroplasts gives a green color to Elysia viridis. Note that viridis means “green” in Latin.

  11. 11.

    The reader will probably be surprised by the fact that the current CO2 concentration was considered, in this chapter, as a historic minimum, while its increase, due to human activities, is so disturbing. Fig. 5.16, which shows the evolution of CO2 in geological time, does not highlight, due to the scale, the current increase.

  12. 12.

    Some authors (e.g., Embley and Martin 2006) hypothesized that in Chromalveolata a single secondary endosymbiotic event is the origin of photosynthesis; it would have occurred in the common ancestor of Chromalveolata. This hypothesis has been criticized by other authors (e.g., Bodyl et al. 2009; Burki et al. 2012).

  13. 13.

    Some authors propose that the apicoplast of Apicomplexa is from a Viridiplantae (green pathway).

  14. 14.

    No single character can be considered characteristic of all organisms that tradition has gathered under the name of “plants.” Similarly, no any combination of characters could define the set of “plants.”

References

  • Andersson GE (2006) The bacterial world gets smaller. Science 314:259–260

    CAS  PubMed  Google Scholar 

  • Ané C, Burleigh JG, Mcmahon MM, Sanderson MJ (2005) Covarion structure in plastid genome evolution: a new statistical test. Mol Biol Evol 22(4):914–924

    PubMed  Google Scholar 

  • Arslan D et al (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A 108:17486–17491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldauf SL (2003) The deep roots of eucaryotes. Science 300:1703–1706

    CAS  PubMed  Google Scholar 

  • Baldauf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46(3):263–273

    Google Scholar 

  • Ball P (2007) Bacteria may be wiring up the soil. Nature 449:388

    CAS  PubMed  Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (2003) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci U S A 90:6091–6094

    Google Scholar 

  • Bertrand J (1991) Mouvement des diatomées. I – L’équilibre dynamique chez Rhoicosphaenia abbreviata. Cryptogamie Algol 12(1):11–29

    Google Scholar 

  • Bertrand J (1992) Mouvement des diatomées. II – Synthèse des mouvements. Cryptogamie Algol 13(1):49–71

    Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 25(1): 50–60

    Google Scholar 

  • Bodyl A (2005) Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41:712–718

    Google Scholar 

  • Bodyl A, Stiller JW, Mackiewicz P (2009) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24(3):119–121

    PubMed  Google Scholar 

  • Bonen L, Doolittle W (1975) On the prokaryotic nature of red algal chloroplasts. Proc Natl Acad Sci U S A 72:2310–2314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bornens M, Azimzadeh J (2007) Origin and evolution of the centrosome. In: Jékeli G (ed) Eukaryotic membranes and cytoskeleton: origin and evolution. Land Bioscience, Austin (Tx), pp 119–129

    Google Scholar 

  • Boudouresque CF, Gómez A (1995) Une approche moderne du monde végétal. Première Partie. GIS Posidonie Publishing, Marseille

    Google Scholar 

  • Boullard B (1990) Guerre et paix dans le règne végétal. Edition Marketing, Paris, France

    Google Scholar 

  • Boxma B, De Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldon T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    CAS  PubMed  Google Scholar 

  • Boyen C, Oudot MP, Loiseaux-De Goer S (2001) Origin and evolution of plastids and mitochondria: the phylogenetic diversity of algae. Cah Biol Mar 42:11–24

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    CAS  PubMed  Google Scholar 

  • Buick R (2010) Ancient acritarchs. Nature 463:885–886

    CAS  PubMed  Google Scholar 

  • Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Royal Soc B 279:2246–2254

    Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n.gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26(3):386–404

    Google Scholar 

  • Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212

    PubMed Central  PubMed  Google Scholar 

  • Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M (2011) Tracing the origin of centrioles, cilia and flagella. J Cell Biol 194(2):165–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14:461–481

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002a) The neomurian origin of archaebacteria, the negibacterial root of the universal tree and the bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002b) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 52:295–354

    Google Scholar 

  • Cérémonie H, Buret F, Simonet P, Vogel TM (2004) Isolation of lightning-competent soil bacteria. Appl Environ Microbiol 70:6342–6346

    PubMed Central  PubMed  Google Scholar 

  • Chadefaud M (1960) Tome I: Les végétaux non vasculaires. Cryptogamie. In: Chadefaud M. et Emberger L (eds) Traité de botanique systématique. Masson et Cie Publishing, Paris, pp –i-xv + 1–1018

    Google Scholar 

  • Chen M, Hiller RG, Howe CJ, Larkum AWD (2005) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light harvesting systems. Mol Biol Evol 22(1):21–28

    PubMed  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of Life. Science 311:1283–1286

    CAS  PubMed  Google Scholar 

  • Claverie JM (2006) Viruses take center stage in cellular evolution. Genome Biol 7:110

    PubMed Central  PubMed  Google Scholar 

  • Claverie JM, Abergel C (2009) Mimivirus and its virophage. Annu Rev Gen 43:49–66

    CAS  Google Scholar 

  • Claverie JM, Abergel C (2010) Mimivirus: the emerging paradox of quasi-autonomous viruses. Trends Genet 26:431–437

    CAS  PubMed  Google Scholar 

  • Claverie JM, Otaga H, Audic S, Abergel C, Suhre K, Fournier PE (2006) Mimivirus and the emerging concept of “giant” virus. Virus Res 117:133–144

    CAS  PubMed  Google Scholar 

  • Combes C (1995) Les interactions durables. Ecologie et évolution du parasitisme. Masson Publishing, Paris

    Google Scholar 

  • Combes C (2001) Les associations du vivant. L’art d’être parasite. Flammarion Publishing, Paris

    Google Scholar 

  • Courties C, Vaquer A, Troussellier M, Lautier J, Chrétiennot-Dinet MJ, Neuveux J, Machado C, Claustre H (1994) Smallest eukaryotic organism. Nature 370:255

    Google Scholar 

  • Curtis NE, Massey SE, Pierce SK (2006) The symbiotic chloroplasts in the Sacoglossan Elysia clarki are from several algal species. Invert Biol 125(4):336–345

    Google Scholar 

  • Dagan T, Martin W (2009) Seeing green and red in diatom genomes. Science 324:1651–1652

    CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Daubin V, Gouy M, Perriere G (2001) Bacterial molecular phylogeny using supertree approach. Genome Inform Ser Workshop Genome Inform 12:155–164

    CAS  Google Scholar 

  • Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730

    CAS  PubMed  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    CAS  PubMed  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    CAS  PubMed  Google Scholar 

  • El Albani A, Bengston S, Canfield DE, Bekker A, Macchiarelli R, Mazurier A, Hammarlund EU, Boulvais P, Dupuy JJ, Fontaine C, Fürsich FT, Gauthier-Lafay F, Janvier P, Javaux E, Ossa Ossa F, Pierson-Wickmann AC, Riboulleau A, Sardini P, Vachard D, Whitehoute M, Meunier A (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104

    PubMed  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    CAS  PubMed  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    CAS  PubMed  Google Scholar 

  • Feldmann J, Feldmann G (1946) Recherches sur l’appareil conducteur des Floridées. Rev Cytol 8:159–209

    Google Scholar 

  • Fischer MG et al (2010) Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A 107:19508–19513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forterre P, Philippe H (1999) The last universal common ancestor (LUCA): simple or complex? Biol Bull 196:373–375; discussion: 375–377

    CAS  PubMed  Google Scholar 

  • Fox GE, Stackbrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen B, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    CAS  PubMed  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    CAS  PubMed  Google Scholar 

  • Germot A, Philippe H, Le Guyader H (1997) Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol Biochem Parasit 87:159–168

    CAS  Google Scholar 

  • Gorenflot R, Guern M (1989) Organisation et biologie des Thallophytes. Doin Publishing, Paris

    Google Scholar 

  • Green BR (2005) Lateral gene transfer in the cyanobacteria: chlorophylls, proteins and scraps of ribosomal RNA. J Phycol 41:449–452

    CAS  Google Scholar 

  • Haeckel E (1894) Systematische Phylogenie. Entwurf eines naturlichen Systems der Organismen auf Grund ihrer Stammesgeschichte. Erster Theil, Systematische Phylogenie der Protisten und Pflanzen. Georg Reimer, Berlin/Allemagne

    Google Scholar 

  • Hansen PJ, Fenchel T (2006) The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res 2:169–177

    Google Scholar 

  • Häring M, Vestergaard G, Rachel R, Chen L, Garrett RA, Prangishvili D (2005) Independent virus development outside a host. Nature 436:1101–1102

    Google Scholar 

  • Hébant C (1977) The conducting tissues of bryophytes. Bryophytorum Bibl 10:1–157 + 80 pl. h.t

    Google Scholar 

  • Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622

    CAS  PubMed  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    CAS  PubMed  Google Scholar 

  • Jeon KW (1972) Development of cellular dependence on infective organisms: microsurgical studies in amoebas. Science 176:1122–1123

    CAS  PubMed  Google Scholar 

  • Jeon KW (1991) Amoeba and x-bacteria: symbiont acquisition and possible species change. In: Margulis L, et Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, USA, pp 118–131

    Google Scholar 

  • Jeon KW (1995) Bacterial endosymbiosis in amoebae. Trends Cell Biol 5:137–140

    CAS  PubMed  Google Scholar 

  • Jeon KW, Jeon MS (1976) Endosymbiosis in amoeba : recently established endosymbionts have become required cytoplasmic components. J Cell Physiol 89(2):337–344

    CAS  PubMed  Google Scholar 

  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428

    CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okamura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–116, 185–209

    CAS  PubMed  Google Scholar 

  • Kim GH, Yoon M, Klotchkova TA (2005) A moving mat: phototaxis in the filamentous green algae Spirogyra (Chlorophyta, Zygnemataceae). J Phycol 41:232–237

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    CAS  PubMed  Google Scholar 

  • Köhler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in Apicomplexan parasites. Science 275:1485–1489

    PubMed  Google Scholar 

  • Kozo-Polyanski BM (1924) A new principle of biology. Essay on the theory of symbiogenesis. Moscou, Russie (en russe)

    Google Scholar 

  • Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6(8):654–662

    CAS  PubMed  Google Scholar 

  • La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D (2003) A giant virus in amoebae. Science 299:2033

    PubMed  Google Scholar 

  • Lamarck JB (1809) Philosophie zoologique. Dentu, Paris

    Google Scholar 

  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95(16):9413–9417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leander BS, Saldarriaga JF, Keeling PJ (2002) Surface morphology of the marine parasite Haplozoon axiothellae Siebert (Dinoflagellata). Eur J Protistol 38:287–297

    Google Scholar 

  • Lecointre G, Le Guyader H (2001) Classification phylogénétique du vivant. Belin Publishing, Paris

    Google Scholar 

  • Lecointre G, Le Guyader H (2006) Classification phylogénétique du vivant, 3rd edn. Belin Publishing, Paris

    Google Scholar 

  • Lee RE, Kugrens P (2000) Ancient atmospheric CO2 and the timing of evolution of secondary endosymbioses. Phycologia 39(2): 167–172

    Google Scholar 

  • Lewin RA (1975) A marine Synechocystis (Cyanophyta, Chlorococcales) epizoic on ascidians. Phycologia 14:153–160

    Google Scholar 

  • Lewin RA (1976) Prochlorophyta as a proposed new division of algae. Nature 261:687–698

    Google Scholar 

  • Lewin RA, Withers N (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256:735–737

    CAS  Google Scholar 

  • Linnaeus C (1753) Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Holmiae, Impensis Laurentii Salvii, Stockholm

    Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    PubMed  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven/London

    Google Scholar 

  • Margulis L (1980) Undulipodium, flagella and cilia. BioSystems 12(1–2):105–108

    CAS  PubMed  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. W.H. Freeman, San Francisco

    Google Scholar 

  • Margulis L, Dolan MF, Guerrero R (2000) The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci U S A 97:6954–6959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCutcheon JP, Moran NA (2011) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol, 14 pp

    Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959

    Google Scholar 

  • McFadden GI, Waller RF (1997) Plastids in parasites of humans. Bioessays 19(11):1033–1040

    CAS  PubMed  Google Scholar 

  • Medlin LK, Kaczmarska I (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43(3):245–270

    Google Scholar 

  • Mereschkowsky C (1905) ÜberNatur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Zentralbl 25:593–604

    Google Scholar 

  • Mereschkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Zentralbl 30:278–367

    Google Scholar 

  • Meyerowitz EM (2002) Plants compared to animals: the broadest comparative study of development. Science 295:1482–1485

    CAS  PubMed  Google Scholar 

  • Monier A, Claverie JM, Ogata H (2008) Taxonomic distribution of large DNA viruses in the sea. Genome Biol 9:R106

    PubMed Central  PubMed  Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    CAS  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UW, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in Diatoms. Science 324:1724–1726

    CAS  PubMed  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    CAS  PubMed  Google Scholar 

  • Nakayama T, Ishida K (2005) Another primary endosymbiosis? Origin of Paulinella chromatophora cyanelles. Phycologia 44(4):74

    Google Scholar 

  • Nicolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A 101(21):8066–8071

    Google Scholar 

  • Nishikawa M, Suzuki K, Yoshida K (1992) DNA integration into recipient yeast chromosomes by trans-kingdom conjugation between Escherichia coli and Saccharomyces cerevisiae. Curr Genet 21:101–108

    CAS  PubMed  Google Scholar 

  • Oltmanns F (1904) Morphologie und Biologie der Algen. Erster Band. Gustav Fischer, Jena

    Google Scholar 

  • Pennisi E (2006) Plant wannabes. Science 313:1229

    CAS  PubMed  Google Scholar 

  • Polzin KM, McKay LL (1991) Identification, DNA sequence, and distribution of IS981, a new, high-copy-number insertion sequence in lactococci. Appl Environ Microbiol 57:734–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahat M, Ben Ishac-Monselise E (1979) Photobiology of the chloroplast hosting mollusc Elysia timida (Opisthobranchia). J Exp Mar Biol Ecol 79:225–233

    Google Scholar 

  • Raoult D, Audio S, Robert C, Abergel C, Ernesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350

    CAS  PubMed  Google Scholar 

  • Raven PH (1970) A multiple origin for plastids and mitochondria. Science 169:641–646

    CAS  PubMed  Google Scholar 

  • Raven JA, Richardson K (1984) Dinophyte flagella: a cost-benefit analysis. New Phytol 98:259–276

    Google Scholar 

  • Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61

    Google Scholar 

  • Reith M, Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5:465–475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155

    CAS  PubMed  Google Scholar 

  • Rumpho ME, Summer EJ, Manhart JR (2000) Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol 123:29–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci U S A 105(46):17867–17871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, Barbe V, Wommack KE, Noordeloos AAM, Brussaard CPD, Claverie JM (2013) The genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci U S A 110(26):10800–10805

    Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Hernández Mariné M, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    CAS  PubMed  Google Scholar 

  • Selga T, Selga M, Gobiņš V, Ozoliņa A (2010) Plastid-nuclear complexes: permanent structures in photosynthesizing tissues of vascular plants. Environ Exp Biol 8:85–92

    Google Scholar 

  • Smith M, Hansen J (2007) Interaction between Mesodinium rubrum and its prey: importance of prey concentration, irradiance and pH. Mar Ecol Prog Ser 338:61–70

    Google Scholar 

  • Stacey G, Bottomley PJ, Van Baalen C, Tabita FR (1979) Control of heterocyst and nitrogenase synthesis in cyanobacteria. J Bacteriol 137:321–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanier RY (1974) Division I, the Cyanobacteria. In: Buchanan RE, et Gibbons NE (eds) Bergey’s manual of determinative bacteriology. Williams & Wilkins Co, Baltimore

    Google Scholar 

  • Stiller JW, Reel DC, Johnson JC (2003) A single origin of plastids revisited : convergent evolution in organellar genome content. J Phycol 39:95–105

    CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    CAS  PubMed  Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    CAS  PubMed  Google Scholar 

  • Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (<or =3 micron) in marine Ecosystems. FEMS Microbiol Rev 32:795–820

    CAS  PubMed  Google Scholar 

  • Waggoner B (2001) Eukaryotes and multicells: origin. In: Encyclopedia of life sciences. Macmillan Publishing Ltd, Basingstoke, pp 1–9

    Google Scholar 

  • Williams SI, Walker DI (1999) Mesoherbivore-macroalagal interactions: feeding ecology of sacoglossan sea slugs (Mollusca, Opisthobranchia) and their effects on their food algae. Oceanogr Mar Biol Annu Rev 37:87–128

    Google Scholar 

  • Woese C (1977) Endosymbionts and mitochondrial origins. J Mol Evol 10:39–96

    Google Scholar 

  • Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the urkingdoms. Syst Appl Microbiol 7:161–177

    Google Scholar 

  • Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr 49:168–179

    CAS  Google Scholar 

  • Yoosuf N et al (2012) Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga Moumouvirus represents a third lineage of the Mimiviridae that is close to the megavirus lineage. Gen Biol Evol 4:1324–1330

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, et Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles-François Boudouresque or Pierre Caumette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boudouresque, CF., Caumette, P., Bertrand, JC., Normand, P., Sime-Ngando, T. (2015). Systematic and Evolution of Microorganisms: General Concepts. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_5

Download citation

Publish with us

Policies and ethics