Skip to main content

Identifying Sources of Aeolian Mineral Dust: Present and Past

  • Chapter
  • First Online:
Mineral Dust

Abstract

Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in glacial periods are likely due to greater production of glaciogenic dust particles from expanded ice sheets and mountain glaciers, but could also include dust inputs from exposed continental and insular shelves now submerged. Future dust sources are difficult to assess, but will likely differ from those of the present because of global warming. Global warming could bring about shifts in dust sources by changes in degree or type of vegetation cover, changes in wind strength, and increases or decreases in the size of water bodies. A major uncertainty in assessing dust sources of the future is related to changes in human land use, which could affect land surface cover, particularly due to increased agricultural endeavors and water usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleinikoff JN, Muhs DR, Sauer R, Fanning CM (1999) Late Quaternary loess in northeastern Colorado Part II–Pb isotopic evidence for the variability of loess sources. Geol Soc Am Bull 111:1876–1883

    Article  Google Scholar 

  • Aleinikoff JN, Muhs DR, Bettis EA III, Johnson WC, Fanning CM, Benton R (2008) Isotopic evidence for the diversity of late Quaternary loess in Nebraska: glaciogenic and non-glaciogenic sources. Geol Soc Am Bull 120:1362–1377

    Article  Google Scholar 

  • Alonso-Perez S, Cuevas E, Querol X, Guerra JC, Perez C (2012) African dust source regions for observed dust outbreaks over the Subtropical Eastern North Atlantic region above 25°N. J Arid Environ 78:100–109

    Article  Google Scholar 

  • Birkeland PW (1999) Soils and geomorphology. Oxford University Press, New York

    Google Scholar 

  • Biscaye PE, Grousset FE, Revel M, Van der Gaast S, Zielinski GA, Vaars A, Kukla G (1997) Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core Summit Greenland. J Geophys Res 102(C12):26765–26781

    Article  Google Scholar 

  • Blatt H (1987) Oxygen isotopes and the origin of quartz. J Sediment Petrol 57:373–377

    Article  Google Scholar 

  • Bristow CS, Drake N, Armitage S (2009) Deflation in the dustiest place on Earth: the Bodélé Depression Chad. Geomorphology 105:50–58

    Article  Google Scholar 

  • Brown GF, Schmidt DL, Huffman AC Jr (1989) Geology of the Arabian Peninsula: shield area of western Saudi Arabia. US Geological Survey Professional Paper 560-A

    Google Scholar 

  • Bryant RG (2013) Recent advances in our understanding of dust source emission processes. Prog Phys Geogr 37:397–421

    Article  Google Scholar 

  • Bullard JE (2013) Contemporary glacigenic inputs to the dust cycle. Earth Surf Proc Landforms 38:71–89

    Article  Google Scholar 

  • Bullard JE, Harrison SP, Baddock MC, Drake N, Gill TE, McTainsh G, Sun Y (2011) Preferential dust sources: a geomorphological classification designed for use in global dust-cycle models. J Geophys Res 116, F04034. doi:10.1029/2011JF002061

    Google Scholar 

  • Bureau of Economic Geology (1992) Geology of Texas. University of Texas at Austin Bureau of Economic Geology, Austin

    Google Scholar 

  • Caquineau S, Gaudichet A, Gomes L, Magonthier M-C, Chatenet B (1998) Saharan dust: clay ratio as a relevant tracer to assess the origin of soil-derived aerosols. Geophys Res Lett 25:983–986

    Article  Google Scholar 

  • Caquineau S, Gaudichet A, Gomes L, Legrand M (2002) Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. J Geophys Res 107(D15):4251. doi:10.1029/2000JD247

    Article  Google Scholar 

  • Chen J, Li G, Yang J, Rao W, Lu H, Balsam W, Sun Y, Ji J (2007) Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochim Cosmochim Acta 71:3904–3914

    Article  Google Scholar 

  • Chester R, Elderfield H, Griffin JJ, Johnson LR, Padgham RC (1972) Eolian dust along the eastern margins of the Atlantic Ocean. Mar Geol 13:91–105

    Article  Google Scholar 

  • Chiapello I, Bergametti G, Chatenet B, Bousquet P, Dulac F, Santos Soares ES (1997) Origins of African dust transported over the northeastern tropical Atlantic. J Geophys Res 102:13701–13709

    Article  Google Scholar 

  • Coudé-Gaussen G (1987) The perisaharan loess: sedimentological characterization and paleoclimatical significance. GeoJournal 15:177–183

    Article  Google Scholar 

  • Creamean JM, Suski KJ, Rosenfeld D, Cazorla A, DeMott PJ, Sullivan RC, White AB, Ralph FM, Minnis P, Comstock JM, Tomlinson JM, Prather KA (2013) Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science 339:1572–1578

    Article  Google Scholar 

  • Crouvi O, Amit R, Enzel Y, Gillespie AR (2010) Active sand seas and the formation of desert loess. Quaternary Sci Rev 29:2087–2098

    Article  Google Scholar 

  • Crusius J, Schroth AW, Gasso S, Moy CM, Levy RC, Gatica M (2011) Glacial flour dust storms in the Gulf of Alaska: hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophys Res Lett 38, L06602

    Article  Google Scholar 

  • Darwin C (1846) An account of the fine dust which falls upon vessels in the Atlantic Ocean. Q J Geol Soc Lond 2:26–30

    Article  Google Scholar 

  • Drake NA, Bristow C (2006) Shorelines in the Sahara: geomorphological evidence for an enhanced monsoon from palaeolake Megachad. Holocene 16:901–911

    Article  Google Scholar 

  • Drake NA, Blench RM, Armitage SJ, Bristow CS, White KH (2011) Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc Natl Acad Sci U S A 108:458–462

    Article  Google Scholar 

  • Engelstaedter S, Washington R, Mahowald N (2009) Impact of changes in atmospheric conditions in modulating summer dust concentration at Barbados: a back-trajectory analysis. J Geophys Res 114, D17111

    Article  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  Google Scholar 

  • Gallet S, Jahn B, Torii M (1996) Geochemical characterization of the Luochuan loess-paleosol sequence China and paleoclimatic implications. Chem Geol 133:67–88

    Article  Google Scholar 

  • Gebhart KA, Schichtel BA, Barna MG (2005) Directional biases in back trajectories caused by model and input data. J Air Waste Manage Assoc 55:1649–1662

    Article  Google Scholar 

  • Ghienne J-F, Schuster M, Bernard A, Duringer P, Brunet M (2002) The Holocene giant Lake Chad revealed by digital elevation models. Quaternary Int 87:81–85

    Article  Google Scholar 

  • Gill TE (1996) Eolian sediments generated by anthropogenic disturbance of playas: human impacts on the geomorphic system and geomorphic impacts on the human system. Geomorphology 17:207–228

    Article  Google Scholar 

  • Gillette DA (1999) A qualitative geophysical explanation for “hot spot” dust emitting source regions. Contrib Atmos Phys 72:67–77

    Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev Geophys 50, RG3005. doi:10.1029/2012RG000388

    Google Scholar 

  • Glaccum RA, Prospero JM (1980) Saharan aerosols over the tropical north Atlantic – mineralogy. Mar Geol 37:295–321

    Article  Google Scholar 

  • Goudie AS (2008) The history and nature of wind erosion in deserts. Annu Rev Earth Planet Sci 36:97–119

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, Heidelberg

    Google Scholar 

  • Grousset FE, Biscaye PE (2005) Tracing dust sources and transport patterns using Sr Nd and Pb isotopes. Chem Geol 222:149–167

    Article  Google Scholar 

  • Harrison SP, Kohfeld KE, Roelandt C, Claquin T (2001) The role of dust in climate changes today at the last glacial maximum and in the future. Earth-Sci Rev 54:43–80

    Article  Google Scholar 

  • Hesse PP, McTainsh GH (2003) Australian dust deposits: modern processes and the Quaternary record. Quaternary Sci Rev 22:2007–2035

    Article  Google Scholar 

  • Holliday VT (1989) The Blackwater Draw Formation (Quaternary): a 1.4-plus-m.y. record of eolian sedimentation and soil formation on the Southern High Plains. Geol Soc Am Bull 101:1598–1607

    Article  Google Scholar 

  • Jackson ML, Levelt TWM, Syers JK, Rex RW, Clayton RN, Sherman GD, Uehara G (1971) Geomorphological relationships of tropospherically derived quartz in the soils of the Hawaiian islands. Soil Sci Soc Am Proc 35:515–525

    Article  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, LaRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust ocean biogeochemistry and climate. Science 308:67–71

    Article  Google Scholar 

  • Karydis V, Kumar AP, Barahona D, Sokolik IN, Nenes A (2011) On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J Geophys Res 116(D23), D23204

    Google Scholar 

  • Kohfeld KE, Harrison SP (2001) DIRTMAP: the geological record of dust. Earth-Sci Rev 54:81–114

    Article  Google Scholar 

  • Kohfeld KE, Tegen I (2007) Record of mineral aerosols and their role in the Earth system. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75

    Google Scholar 

  • Laity JE (1994) Landforms of aeolian erosion. In: Abrahams A, Parsons A (eds) Geomorphology of desert environments. Chapman & Hall, London, pp 506–535

    Chapter  Google Scholar 

  • Laity JE (2011) Pavements and stone mantles. In: Thomas DSG (ed) Arid zone geomorphology: process form and change in drylands, 3rd edn. Wiley, Chichester, pp 181–207

    Chapter  Google Scholar 

  • Lee JA, Baddock MC, Mbuh MJ, Gill TE (2012) Geomorphic and land cover characteristics of aeolian dust sources in West Texas and eastern New Mexico USA. Aeolian Res 3:459–466

    Article  Google Scholar 

  • Li-Jones X, Prospero JM (1998) Variations in the size distribution of non-sea-salt sulfate aerosol in the marine boundary layer at Barbados: impact of African dust. J Geophys Res D Atmos 103:16073–16084

    Article  Google Scholar 

  • Liu T (1985) Loess in China, 2nd edn. China Ocean Press/Springer, Beijing/Berlin

    Google Scholar 

  • Maher BA, Prospero JM, Mackie D, Gaiero D, Hesse P, Balkanski Y (2010) Global connections between aeolian dust climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci Rev 99:61–97

    Article  Google Scholar 

  • Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, Bonnet S, Chen Y, Chuang PY, Cohen DD, Dulac F, Herut B, Johansen AM, Kubilay N, Losno R, Maenhaut W, Paytan A, Prospero JM, Shank LM, Siefert RL (2009) Atmospheric iron deposition: global distribution variability and human perturbations. Ann Rev Mar Sci 1:245–278

    Article  Google Scholar 

  • McCauley JF, Grolier MJ, Breed CS (1977) Yardangs. In: Doehring DO (ed) Geomorphology in arid regions. Allen and Unwin, London, pp 233–269

    Google Scholar 

  • McFadden LD, Wells SG, Jercinovich MJ (1987) Influences of eolian and pedogenic processes on the origin and evolution of desert pavements. Geology 15:504–508

    Article  Google Scholar 

  • McTainsh GH (1989) Quaternary aeolian dust processes and sediments in the Australian region. Quaternary Sci Rev 8:235–253

    Article  Google Scholar 

  • Meyer I, Davies GR, Stuut J-BW (2011) Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate reconstructions: an example from deep-sea sediments offshore NW Africa. Geochem Geophys Geosyst 12, Q03005

    Article  Google Scholar 

  • Middleton NJ, Goudie AS (2001) Saharan dust: sources and trajectories. Trans Inst Br Geogr 26:165–181

    Article  Google Scholar 

  • Muhs DR (2013a) Geologic records of dust in the Quaternary. Aeolian Res 9:3–48

    Article  Google Scholar 

  • Muhs DR (2013b) Loess and its geomorphic stratigraphic and paleoclimatic significance in the Quaternary. In: Shroder JF (ed) Treatise on geomorphology, vol 11. Academic Press, San Diego, pp 149–183

    Chapter  Google Scholar 

  • Muhs DR, Budahn J, Prospero JM, Carey SN (2007) Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. J Geophys Res 112, F02009

    Google Scholar 

  • Muhs DR, Budahn J, Johnson DL, Reheis M, Beann J, Skipp G, Fisher E, Jones JA (2008) Geochemical evidence for airborne dust additions to soils in Channel Islands National Park California. Geol Soc Am Bull 120:106–126

    Article  Google Scholar 

  • Muhs DR, Budahn J, Skipp G, Prospero JM, Patterson D, Bettis EA III (2010) Geochemical and mineralogical evidence for Sahara and Sahel dust additions to Quaternary soils on Lanzarote, eastern Canary Islands, Spain. Terra Nova 22:399–410

    Article  Google Scholar 

  • Muhs DR, Budahn J, Prospero JM, Skipp G, Herwitz SR (2012) Soil genesis on the island of Bermuda in the Quaternary: the importance of African dust transport and deposition. J Geophys Res 117, F03025

    Google Scholar 

  • Okin GS, Gillette DA, Herrick JE (2006) Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J Arid Environ 65:253–275

    Article  Google Scholar 

  • Olivarez AM, Owen RM, Rea DK (1991) Geochemistry of eolian dust in Pacific pelagic sediments: implications for paleoclimatic interpretations. Geochim Cosmochim Acta 55:2147–2158

    Article  Google Scholar 

  • Pokras EM, Mix AC (1985) Eolian evidence for spatial variability of late Quaternary climates in tropical Africa. Quatern Res 24:137–149

    Article  Google Scholar 

  • Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302:1024–1027

    Article  Google Scholar 

  • Prospero JM, Bonatti E, Schubert C, Carlson TN (1970) Dust in the Caribbean atmosphere traced to an African dust storm. Earth Planet Sci Lett 9:287–293

    Article  Google Scholar 

  • Prospero JM, Olmez I, Ames M (2001) Al and Fe in PM 2.5 and PM 10 suspended particles in south-central Florida: the impact of the long range transport of African mineral dust. Water Air Soil Pollut 125:291–317

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002

    Article  Google Scholar 

  • Prospero JM, Bullard JE, Hodgkins R (2012) High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science 335:1078–1082

    Article  Google Scholar 

  • Radhi M, Box MA, Box GP, Keywood MD, Cohen DD, Stelcer E, Mitchell RM (2011) Size-resolved chemical composition of Australian dust aerosol during winter. Environ Chem 8:248–262

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Breshears DD, Field JP, Goudie AS, Huxman TE, Li J, Okin GS, Swap RJ, Thomas AD, Van Pelt S, Whicker JJ, Zobeck TM (2011) Aeolian processes and the biosphere. Rev Geophys 49, RG3001

    Google Scholar 

  • Reid EA, Reid JS, Meier MM, Dunlap MR, Cliff SS, Broumas A, Perry K, Maring H (2003a) Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J Geophys Res 108(D19):8591

    Article  Google Scholar 

  • Reid JS, Jonsson HH, Maring HB, Smirnov A, Savoie DL, Cliff SS, Reid EA, Livingston JM, Meier MM, Dubovik O, Tsay S-C (2003b) Comparison of size and morphological measurements of coarse mode dust particles from Africa. J Geophys Res 108(D19):8593

    Article  Google Scholar 

  • Rojo L, Gill TE, Gillette DA (2008) Particle size/composition relationships of wind-eroding sediments Owens (dry) Lake California USA. X-Ray Spectrom 37:111–115

    Article  Google Scholar 

  • Scheuvens D, Schütz L, Kandler K, Ebert E, Weinbruch S (2013) Bulk composition of northern African dust and its source sediments – a compilation. Earth-Sci Rev 116:170–194

    Article  Google Scholar 

  • Shao Y, Wyrwoll K-H, Chappell A, Huang J, Lin Z, McTainsh GH, Mikami M, Tanaka TY, Wang X, Yoon S (2011) Dust cycle: an emerging theme in Earth system science. Aeolian Res 2:181–204

    Article  Google Scholar 

  • Shaw PA, Bryant RG (2011) Pans playas and salt lakes. In: Thomas DSG (ed) Arid zone geomorphology: process form and change in drylands, 3rd edn. Wiley, Chichester, pp 373–401

    Chapter  Google Scholar 

  • Smalley IJ (1966) The properties of glacial loess and the formation of loess deposits. J Sediment Petrol 36:669–676

    Article  Google Scholar 

  • Smalley IJ (1995) Making the material: the formation of silt-sized primary mineral particles for loess deposits. Quaternary Sci Rev 14:645–651

    Article  Google Scholar 

  • Smith GD (1942) Illinois loess: variations in its properties and distribution a pedologic interpretation. Univ Ill Agric Exp Stn Bull 490:139–184

    Google Scholar 

  • Smith BJ, Wright JS, Whalley WB (2002) Sources of non-glacial loess-size quartz silt and the origins of “desert loess”. Earth-Sci Rev 59:1–26

    Article  Google Scholar 

  • Stuut J-BW, Zabel M, Ratmeyer V, Helmke P, Schefuß E, Lavik G, Schneider R (2005) Provenance of present-day eolian dust collected off NW Africa. J Geophys Res 110, D04202

    Google Scholar 

  • Sun J, Muhs DR (2007) Dune fields: mid-latitudes. In: Elias S (ed) The encyclopedia of Quaternary sciences. Elsevier, Amsterdam, pp 607–626

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Taylor SR, McLennan SM, McCulloch MT (1983) Geochemistry of loess, continental crustal composition and crustal model ages. Geochim Cosmochim Acta 47:1897–1905

    Article  Google Scholar 

  • Tegen I (2003) Modeling the mineral dust aerosol cycle in the climate system. Quaternary Sci Rev 22:1821–1834

    Article  Google Scholar 

  • Trapp JM, Millero FJ, Prospero JM (2010) Temporal variability of the elemental composition of African dust measured in trade wind aerosols at Barbados and Miami. Mar Chem 120:71–82

    Article  Google Scholar 

  • Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153

    Article  Google Scholar 

  • Twohy CH, Kreidenweis SM, Eidhammer T, Browell EV, Heymsfield AJ, Bansemer AR, Anderson BE, Chen G, Ismail S, DeMott PJ, Van Den Heever SC (2009) Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophys Res Lett 36, L01807

    Article  Google Scholar 

  • Warren A, Chappell A, Todd MC, Bristow C, Drake N, Engelstaedter S, Martins V, M’bainayel S, Washington R (2007) Dust-raising in the dustiest place on earth. Geomorphology 92:25–37

    Article  Google Scholar 

  • Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Ann Assoc Am Geogr 93:297–313

    Article  Google Scholar 

  • Washington R, Bouet C, Cautenet G, Mackenzie E, Ashpole I, Engelstaedter S, Henderson GM, Schepanski K, Tegan I (2009) Dust as a tipping element: the Bodélé Depression, Chad. Proc Natl Acad Sci 106:20564–20571

    Article  Google Scholar 

  • Wright JS (2001) “Desert” loess versus “glacial” loess: quartz silt formation, source areas and sediment pathways in the formation of loess deposits. Geomorphology 36:231–256

    Article  Google Scholar 

  • Wright J, Smith B (1993) Fluvial comminution and the production of loess-sized quartz silt: a simulation study. Geogr Ann 75A:25–34

    Article  Google Scholar 

  • Wright J, Smith BJ, Whalley WB (1998) Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology 23:15–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Muhs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Muhs, D.R., Prospero, J.M., Baddock, M.C., Gill, T.E. (2014). Identifying Sources of Aeolian Mineral Dust: Present and Past. In: Knippertz, P., Stuut, JB. (eds) Mineral Dust. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8978-3_3

Download citation

Publish with us

Policies and ethics