Skip to main content

Mucus as Physiological Barrier to Intracellular Delivery

  • Chapter
  • First Online:
Intracellular Delivery II

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

Abstract

Nanoparticle-based delivery systems are versatile tools to improve drug delivery because size, surface charge and surface hydrophobicity can be varied to meet specific physiological requirements. While small size, hydrophobicity, and positive surface charge, in general, improve passage through the plasma membrane and enhance intracellular delivery, these particle parameters may not be optimal if a mucus layer covers the target cells. Many target cells for drug delivery in the gastrointestinal tract but also in the respiratory tract are covered by mucus. The review describes the different compositions of mucus-covered epithelia of the oro-gastrointestinal and the respiratory tract and strategies to reach target cells beyond the mucus layer by the design of appropriate nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP-1:

Activator protein 1

CREB:

cAMP response element binding protein

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

IL:

Interleukin

JNK:

Jun N-terminal kinase

LPS:

Lipopolysaccharide

MEK:

Mitogen-activated protein kinase kinase

MSK1:

Mitogen and stress activated protein kinase

MUC:

Mucin

MyD88:

Myeloid differentiation primary response gene 88

NIK:

NFkB-inducing kinase

NFkB:

Nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells

p38:

p38 mitogen-activated protein kinase

PTS:

proline, serine, and threonine

ROS:

Reactive oxygen species

SP1:

Specificity protein 1

Src:

Rous sarcoma oncogene cellular homolog

STAT:

Signal transducer and activator of transcription

TAK1:

TGF β-activated kinase

References

  • Albrecht K, Greindl M, Kremser C, Wolf C, Debbagec B, Bernkop-Schürch A (2006) Comparative in vivo mucoadhesion studies ofthiomer formulations using magnetic resonance imaging and fluorescence detection. J Control Release 115:78–84

    CAS  PubMed  Google Scholar 

  • Ali MS, Pearson JP (2007) Upper airway mucin gene expression: a review. Laryngoscope 117:932–938

    CAS  PubMed  Google Scholar 

  • Aljayyoussi G, Abdulkarim M, Griffiths P, Gumbleton M (2012) Pharmaceutical nanoparticles and the mucin biopolymer barrier. BioImpacts BI 2:173–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anand U, Feridooni T, Agu R (2012) Novel mucoadhesive polymers for nasal delivery. In: Seizer A (ed) Recent advances in novel drug carrier systems. InTech

    Google Scholar 

  • Aoki Y, Morishita M, Takayama K (2005) Role of the mucous/glycocalyx layers in insulin permeation across the rat ileal membrane. Int J Pharm 297:98–109

    CAS  PubMed  Google Scholar 

  • Bernkop-Schnürch A, Steininger S (2000) Synthesis and characterization of mucoadhesive thiolated polymers. Int J Pharm 194:239–247

    PubMed  Google Scholar 

  • Blegamwar V, Shah V, Surana SJ (2009) Formulation and evaluation of oral mucoadhesive multiparticulate sytsem containing metoprolol tartrate: an in vitro-ex vivo characterization. Curr Drug Deliv 6:113–121

    Google Scholar 

  • Caramella C, Bonferoni M, Rossi S, Ferrari F (1994) Rheological and tensile tests for the assessment of polymer-mucin interactions. Eur J Pharm Biopharm 40:213–217

    CAS  Google Scholar 

  • Chen J, Zhang C, Liu Q, Shao X, Feng C, Shen Y, Zhang Q, Jiang X (2012) Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations. J Drug Target 20:174–184

    CAS  PubMed  Google Scholar 

  • Cohen S, Coue G, Beno D, Korenstein R, Engbersen JF (2012) Bioreducible poly(amidoamine)s as carriers for intracellular protein delivery to intestinal cells. Biomaterials 33:614–623

    CAS  PubMed  Google Scholar 

  • Collins LM, Dawes C (1987) The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res 66:1300–1302

    CAS  PubMed  Google Scholar 

  • Csaba N, Sanchez A, Alonso MJ (2006) PLGA: poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release 113:164–172

    CAS  PubMed  Google Scholar 

  • Csaba N, Garcia-Fuentes M, Alonso MJ (2009) Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 61:140–157

    CAS  PubMed  Google Scholar 

  • Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C (2009) Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules 10:1253–1258

    CAS  PubMed  Google Scholar 

  • Davidovich-Pinhas M, Baianco-Peled H (2013) Mucoadhesion: a review of characterization techniques. Expert Opin 7:259–271

    Google Scholar 

  • Davis CW, Dickey BF (2008) Regulated airway goblet cell mucin secretion. Annu Rev Physiol 70:487–512

    CAS  PubMed  Google Scholar 

  • Dawson M, Krauland E, Wirtz D, Hanes J (2004) Transport of polymeric nanoparticle gene carriers in gastric mucus. Biotechnol Prog 20:851–857

    CAS  PubMed  Google Scholar 

  • Deacon M, McGurk S, Roberts C, Williams P, Tendler S, Davies M, Davies S, Harding S (2000) Atomic force microscopy of gastric mucin and chitosan mucoadhesive systems. Biochem J 348:557–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorofeyev AE, Vasilenko IV, Rassokhina OA, Kondratiuk RB (2013) Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol Res Pract 2013:431231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elsayed A, Remawi MA, Qinna N, Farouk A, Badwan A (2009) Formulation and characterization of an oily-based system for oral delivery of insulin. Eur J Pharm Biopharm 73:269–279

    CAS  PubMed  Google Scholar 

  • Elzagheid A, Emaetig F, Buhmeida A, Laato M, El-Faitori O, Syrjanen K, Collan Y, Pyrhonen S (2013) Loss of MUC2 expression predicts disease recurrence and poor outcome in colorectal carcinoma. Tumour Biol J Int Soc Oncodevelop Biol Med 34:621–628

    CAS  Google Scholar 

  • Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, Hanes J (2012) Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Trans Med 4:138ra179

    Google Scholar 

  • Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. N Engl J Med 363:2233–2247

    CAS  PubMed  Google Scholar 

  • Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46:183–196

    CAS  PubMed  Google Scholar 

  • Faure M, Moennoz D, Montigon F, Fay LB, Breuille D, Finot PA, Ballevre O, Boza J (2002) Development of a rapid and convenient method to purify mucins and determine their in vivo synthesis rate in rats. Anal Biochem 307:244–251

    CAS  PubMed  Google Scholar 

  • Figueiredo L, Cadete A, Goncalves LM, Corvo ML, Almeida AJ (2012) Intranasal immunisation of mice against Streptococcus equi using positively charged nanoparticulate carrier systems. Vaccine 30:6551–6558

    CAS  PubMed  Google Scholar 

  • Finkbeiner WE, Zlock LT, Morikawa M, Lao AY, Dasari V, Widdicombe JH (2011) Cystic fibrosis and the relationship between mucin and chloride secretion by cultures of human airway gland mucous cells. Am J Physiol Cell Mol Physiol 301:L402–L414

    CAS  Google Scholar 

  • Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, Neutra MR (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184:1045–1059

    CAS  PubMed  Google Scholar 

  • Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S (2006) Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27:3482–3490

    CAS  PubMed  Google Scholar 

  • Grabovaca V, Guggi D, Bernkop-Schnürch A (2005) Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev 57:1713–1723

    Google Scholar 

  • Hagerstrom H, Edsman K (2003) Limitations of the rheological mucoadhesion method: the effect of the choice of conditions and the rheological synergism parameter. Eur J Pharm Biopharm 18:349–357

    CAS  Google Scholar 

  • Han HK, Shin HJ, Ha DH (2012) Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Eur J Pharm Sci 46:500–507

    CAS  PubMed  Google Scholar 

  • Hassan E, Gallo J (1990) A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm Res 7:491–495

    CAS  PubMed  Google Scholar 

  • Hauber HP, Foley SC, Hamid Q (2006) Mucin overproduction in chronic inflammatory lung disease. Can Respir J J Can Thorac Soc 13:327–335

    Google Scholar 

  • Hehar SS, Mason JD, Stephen AB, Washington N, Jones NS, Jackson SJ, Bush D (1999) Twenty-four hour ambulatory nasal pH monitoring. Clin Otolaryngol Allied Sci 24:24–25

    CAS  PubMed  Google Scholar 

  • Hida K, Lai SK, Suk JS, Won SY, Boyle MP, Hanes J (2011) Common gene therapy viral vectors do not efficiently penetrate sputum from cystic fibrosis patients. PLoS ONE 6:e19919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter AC, Elsom J, Wibroe PP, Moghimi SM (2012) Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomed Nanotechnol Biol Med 8(Suppl 1):S5–S20

    CAS  Google Scholar 

  • Issa M, Köping-Höggård M, Artursson P (2005) Chitosan and the mucosal delivery of bio-technology drugs. Drug Discov TodayTechnol 2:1–6

    CAS  Google Scholar 

  • Jayaraman S, Joo NS, Reitz B, Wine JJ, Verkman AS (2001) Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na(+)] and pH but elevated viscosity. Proc Natl Acad Sci USA 98:8119–8123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katayama H, Nishimura T, Ochi S, Tsuruta Y, Yamazaki Y, Shibata K, Yoshitomi H (1999) Sustained release liquid preparation using sodium alginate for eradication of Helicobacter pyroli. Biol Pharm Bull 22:55–60

    CAS  PubMed  Google Scholar 

  • Kato Y, Onishi H, Machida Y (2003) Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol 4:303–309

    CAS  PubMed  Google Scholar 

  • Kim J, Khan W (2013) Goblet cells and mucins: role in innate defense in enteric infections. Pathogens 2:55–70

    CAS  Google Scholar 

  • Kirch J, Schneider A, Abou B, Hopf A, Schaefer UF, Schneider M, Schall C, Wagner C, Lehr CM (2012) Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. Proc Natl Acad Sci USA 109:18355–18360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knowles MR, Boucher RC (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109:571–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krouse ME (2001) Is cystic fibrosis lung disease caused by abnormal ion composition or abnormal volume? J Gen Physiol 118:219–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laboisse C, Jarry A, Branka JE, Merlin D, Bou-Hanna C, Vallette G (1996) Recent aspects of the regulation of intestinal mucus secretion. Proc Nutr Soc 55:259–264

    CAS  PubMed  Google Scholar 

  • Laffleur F, Hintzen F, Shahnaz G, Rahmat D, Leithner K, Bernkop-Schnurch A (2013) Development and in vitro evaluation of slippery nanoparticles for enhanced diffusion through native mucus. Nanomedicine [Epub ahead of print]

    Google Scholar 

  • Lagerlof F, Dawes C (1984) The volume of saliva in the mouth before and after swallowing. J Dent Res 63:618–621

    CAS  PubMed  Google Scholar 

  • Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, Hanes J (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 104:1482–1487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lai SK, Wang YY, Hanes J (2009a) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lai SK, Wang YY, Wirtz D, Hanes J (2009b) Micro- and macrorheology of mucus. Adv Drug Deliv Rev 61:86–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lai SK, Suk JS, Pace A, Wang YY, Yang M, Mert O, Chen J, Kim J, Hanes J (2011) Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials 32:6285–6290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DW, Shirley SA, Lockey RF, Mohapatra SS (2006) Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res 7:112

    PubMed Central  PubMed  Google Scholar 

  • Lehr C, Bouwstra J, Tukker J, Junginger H (1990) Intestinal transit of bioadhesive microspheres in an in situ loop in the rat-a comparative study with copolymers and blends based on poly (acrylic acid). J Control Release 13:51–62

    CAS  Google Scholar 

  • Li JD, Feng W, Gallup M, Kim JH, Gum J, Kim Y, Basbaum C (1998) Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci USA 95:5718–5723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Chen D, Le C, Zhu C, Gan Y, Hovgaard L, Yang M (2011) Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int J Nanomed 6:3151–3162

    CAS  Google Scholar 

  • Liu Q, Shen Y, Chen J, Gao X, Feng C, Wang L, Zhang Q, Jiang X (2012) Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharm Res 29:546–558

    CAS  PubMed  Google Scholar 

  • Makhlof A, Werle M, Tozuka Y, Takeuchi H (2011) A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa. J Control Release 149:81–88

    CAS  PubMed  Google Scholar 

  • Markesich DC, Anand BS, Lew GM, Graham DY (1995) Helicobacter pylori infection does not reduce the viscosity of human gastric mucus gel. Gut 36:327–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazzaferro S, Bouchemal K, Skanji R, Gueutin C, Chacun H, Ponchel G (2012) Intestinal permeation enhancement of docetaxel encapsulated into methyl-beta-cyclodextrin/poly(isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan. J Control Release 162:568–574

    CAS  PubMed  Google Scholar 

  • McGill SL, Smyth HD (2010) Disruption of the mucus barrier by topically applied exogenous particles. Mol Pharm 7:2280–2288

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGuckin MA, Hasnain SZ (2014) There is a ‘uc’ in mucus, but is there mucus in UC? Gut 63:216–217

    Google Scholar 

  • Merkus FW, Verhoef JC, Schipper NG, Marttin E (1998) Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev 29:13–38

    PubMed  Google Scholar 

  • Moghaddam FA, Atyabi F, Dinarvand R (2009) Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles. Nanomed Nanotechnol Biol Med 5:208–215

    CAS  Google Scholar 

  • Mortazavi S, Smart J (1995) An investigation of some factors influencing the in vitro assessment of mucoadhesion. Int J Pharm 116:223–230

    Google Scholar 

  • Müller C, Leithner K, Hauptstein S, Hintzen F, Salvenmoser W, Bernkop-Schnürch A (2013) Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications. J Nanopart Res 15(1):1–13

    Google Scholar 

  • Murty VL, Sarosiek J, Slomiany A, Slomiany BL (1984) Effect of lipids and proteins on the viscosity of gastric mucus glycoprotein. Biochem Biophys Res Commun 121:521–529

    CAS  PubMed  Google Scholar 

  • Nielsen L, Schubert L, Hansen J (1998) Bioadhesive drug delivery systems. I. Characterization of mucoadhesive properties of systems based on glyceryl monooleate and glycerylmonolinoleate. Eur J Pharm Biopharm 6:231–239

    CAS  Google Scholar 

  • Norris D, Sinko P (1997) Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 63:1481–1492

    CAS  Google Scholar 

  • Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA (2001) Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 81:1930–1937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ordonez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, Hotchkiss JA, Zhang Y, Novikov A, Dolganov G, Fahy JV (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163:517–523

    CAS  PubMed  Google Scholar 

  • Oyarzun-Ampuero FA, Brea J, Loza MI, Torres D, Alonso MJ (2009) Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm 381:122–129

    CAS  PubMed  Google Scholar 

  • Paliwal R, Paliwal SR, Agrawal GP, Vyas SP (2012) Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: In vitro and in vivo evaluation. Int J Pharm 422:179–184

    CAS  PubMed  Google Scholar 

  • Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, Cui FD (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 249:139–147

    CAS  PubMed  Google Scholar 

  • Patel D, Smith J, Smith A, Grist N, Barnett P, Smart J (2000) An atomic force microscopy investigation of bioadhesive polymer adsorption onto human buccal cells. Int J Pharm 200:271–277

    CAS  PubMed  Google Scholar 

  • Patlolla A, Patlolla B, Tchounwou P (2010) Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Mol Cell Biochem 338:225–232

    CAS  PubMed  Google Scholar 

  • Pires A, Fortuna A, Alves G, Falcao A (2009) Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci 12:288–311

    Google Scholar 

  • Qiang F, Shin HJ, Lee BJ, Han HK (2012) Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. Int J Pharm 430:161–166

    CAS  PubMed  Google Scholar 

  • Rahmat D, Muller C, Barthelmes J, Shahnaz G, Martien R, Bernkop-Schnurch A (2012) Thiolated hydroxyethyl cellulose: Design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles. Eur J Pharm Biopharm 83:149–155

    Google Scholar 

  • Randell SH, Boucher RC (2006) Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 35:20–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao K, Buri P (1989) A novel in situ method to test polymers and coated microparticles for bioadhesion. Int J Pharm 52:265–270

    CAS  Google Scholar 

  • Roblegg E, Fröhlich E, Meindl C, Teubl B, Zaversky M, Zimmer A (2012) Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology 6:399–413

    CAS  PubMed  Google Scholar 

  • Rodrigues S, Dionísio M, Remuñán López C, Grenha A (2012) Biocompatibility of Chitosan carriers with application in drug delivery. J Funct Biomater 3:615–641

    CAS  Google Scholar 

  • Rogers DF (2002) Pharmacological regulation of the neuronal control of airway mucus secretion. Curr Opin Pharmacol 2:249–255

    CAS  PubMed  Google Scholar 

  • Rogers DF (2007) Physiology of airway mucus secretion and pathophysiology of hypersecretion. Respir Care, 52:1134–1146 (discussion 1146–1139)

    Google Scholar 

  • Rose MC, Voynow JA (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 86:245–278

    CAS  PubMed  Google Scholar 

  • Rossi S, Ferrari F, Bonferoni MC, Caramella C (2001) Characterization of chitosan hydrochloride–mucin rheological interaction: influence of polymer concentration and polymer: mucin weight ratio. Eur J Pharm Sci 12:479–485

    CAS  PubMed  Google Scholar 

  • Roy S, Pal K, Anis A, Pramanik K, Prabhakar B (2009) Polymers in mucoadhesive drug delivery system: a brief note. Des Monomers Polym 12:483–495

    CAS  Google Scholar 

  • Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA (2011) Development and in vitro evaluation of thiolated chitosan–Poly(methacrylic acid) nanoparticles as a local mucoadhesive delivery system. Int J Biol Macromol 48:403–407

    CAS  PubMed  Google Scholar 

  • Sakagami M, Sakon K, Kinoshita W, Makino Y (2001) Enhanced pulmonary absorption following aerosol administration of mucoadhesive powder microspheres. J Control Release 77:117–129

    CAS  PubMed  Google Scholar 

  • Sakloetsakun D, Perera G, Hombach J, Millotti G, Bernkop-Schnurch A (2010) The impact of vehicles on the mucoadhesive properties of orally administrated nanoparticles: a case study with chitosan-4-thiobutylamidine conjugate. AAPS PharmSciTech 11:1185–1192

    PubMed Central  PubMed  Google Scholar 

  • Sakuma S, Sudo R, Suzuki N, Kikuchi H, Akashi M, Hayashi M (1999) Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract. Int J Pharm 177:161–172

    CAS  PubMed  Google Scholar 

  • Salama HA, Mahmoud AA, Kamel AO, ABDEL HADY M, AWAD GA (2012) Phospholipid based colloidal poloxamer-nanocubic vesicles for brain targeting via the nasal route. Colloids Surf B Biointerfaces 100:146–154

    CAS  PubMed  Google Scholar 

  • Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422

    CAS  PubMed  Google Scholar 

  • Sanders NN, de Smedt SC, van Rompaey E, Simoens P, de Baets F, Demeester J (2000) Cystic fibrosis sputum: a barrier to the transport of nanospheres. Am J Respir Crit Care Med 162:1905–1911

    CAS  PubMed  Google Scholar 

  • Saremi S, Atyabi F, Akhlaghi SP, Ostad SN, Dinarvand R (2011) Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation. Int J Nanomed 6:119–128

    CAS  Google Scholar 

  • Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R (2007a) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8:3054–3060

    CAS  PubMed  Google Scholar 

  • Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007b) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24:2198–2206

    CAS  PubMed  Google Scholar 

  • Sarparanta MP, Bimbo LM, Makila EM, Salonen JJ, Laaksonen PH, Helariutta AM, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ (2012) The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33:3353–3362

    CAS  PubMed  Google Scholar 

  • Schultz M, Callow M, Callow J (2000) A turbulent channel flow apparatus for the determination of the adhesion strength of microfouling organisms. Biofouling 15:243–251

    Google Scholar 

  • Shahnaz G, Vetter A, Barthelmes J, Rahmat D, Laffleur F, Iqbal J, Perera G, Schlocker W, Dunnhaput S, Augustijns P, Bernkop-Schnurch A (2012) Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization. Int J Pharm 428:164–170

    CAS  PubMed  Google Scholar 

  • Shimura S, Andoh Y, Haraguchi M, Shirato K (1996) Continuity of airway goblet cells and intraluminal mucus in the airways of patients with bronchial asthma. Eur Respir J 9:1395–1401

    CAS  PubMed  Google Scholar 

  • Shirazi T, Longman RJ, Corfield AP, Probert CS (2000) Mucins and inflammatory bowel disease. Postgrad Med J 76:473–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon M, Wittmar M, Kissel T, Linn T (2005) Insulin containing nanocomplexes formed by self-assembly from biodegradable amine-modified poly(vinyl alcohol)-graft-poly(L-lactide): bioavailability and nasal tolerability in rats. Pharm Res 22:1879–1886

    CAS  PubMed  Google Scholar 

  • Singh A, Singh A, Satheesh Madhav N (2012) Nasal cavity: a promising transmucosal platform for drug delivery and research approaches from nasal to brain targetting. J Drug Delivery Thera 2:22–33

    Google Scholar 

  • Slutter B, Bal SM, Que I, Kaijzel E, Lowik C, Bouwstra J, Jiskoot W (2010) Antigen-adjuvant nanoconjugates for nasal vaccination: an improvement over the use of nanoparticles? Mol Pharm 7:2207–2215

    PubMed  Google Scholar 

  • Smart JD (2005) The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 57:1556–1568

    CAS  PubMed  Google Scholar 

  • Specian RD, Oliver MG (1991) Functional biology of intestinal goblet cells. Am J Physiol 260:C183–C193

    CAS  PubMed  Google Scholar 

  • Suwannateep N, Banlunara W, Wanichwecharungruang SP, Chiablaem K, Lirdprapamongkol K, Svasti J (2011) Mucoadhesive curcumin nanospheres: biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J Control Release 151:176–182

    CAS  PubMed  Google Scholar 

  • Tamburic S, Craig DQM (1997) A comparison of different in vitro methods for measuring mucoadhesive performance. Eur J Pharm Biopharm 44:159–167

    CAS  Google Scholar 

  • Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA 106:19268–19273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teubl BJ, Meindl C, Eitzlmayr A, Zimmer A, Frohlich E, Roblegg E (2012) In vitro permeability of neutral polystyrene particles via buccal mucosa. Small 9:457–467

    Google Scholar 

  • Teubl BJ, Absenger M, Frohlich E, Leitinger G, Zimmer A, Roblegg E (2013) The oral cavity as a biological barrier system: design of an advanced buccal in vitro permeability model. Eur J Pharm Biopharm 84:386–393

    CAS  PubMed  Google Scholar 

  • Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P (2008) Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J Control Release 125:236–245

    CAS  PubMed  Google Scholar 

  • Thorley AJ, Tetley TD (2007) Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int J Chronic Obstructive Pulm Dis 2:409–428

    CAS  Google Scholar 

  • Umamaheshwari RB, Ramteke S, Jain NK (2004) Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model. AAPS PharmSciTech 5:e32

    CAS  PubMed  Google Scholar 

  • Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J (2008) Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem 47:9726–9729

    CAS  Google Scholar 

  • Wang X, Zheng C, Wu Z, Teng D, Zhang X, Wang Z, Li C (2009) Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J Biomed Mater Res Part B Appl Biomater 88:150–161

    CAS  PubMed  Google Scholar 

  • Wang YY, Lai SK, So C, Schneider C, Cone R, Hanes J (2011) Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLoS ONE 6:e21547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woertz C, Preis M, Breitkreutz J, Kleinebudde P (2013) Assessment of test methods evaluating mucoadhesive polymers and dosage forms: an overview. Eur J Pharm Biopharm 85:843–853

    Google Scholar 

  • Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y (2005) Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release 102:373–381

    CAS  PubMed  Google Scholar 

  • Yu T, Wang Y, Yang M, Schneider C, Zhong W, Pulicare S, Choi W, Mert O, Lai SK, Hanes J (2012) Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid). Drug Deliv Trans Res 2:124–128

    CAS  Google Scholar 

  • Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ (2013) Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharm 10:1865–1873

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhang H, Wu Z, Wang Z, Niu H, Li C (2008) Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm 68:526–534

    CAS  PubMed  Google Scholar 

  • Zhang X, Wang Y, Zheng C, Li C (2012) Phenylboronic acid-functionalized glycopolymeric nanoparticles for biomacromolecules delivery across nasal respiratory. Eur J Pharm Biopharm 82:76–84

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support of the studies by FP6 European integrated project “NanoBiopharmaceutics”, NMP4-CT-2006-026723, the Research and Technology Development in Project Cluster NANO-HEALTH and the Austrian Research Promotion Agency (FFG) project 826136 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonore Fröhlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fröhlich, E., Roblegg, E. (2014). Mucus as Physiological Barrier to Intracellular Delivery. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_7

Download citation

Publish with us

Policies and ethics